NAME	•••••••	• • • • • • • • • • • • • • • • • • • •	ADM NUMBER				
				~			
	•			SIGNATURE	•••••		
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				DATE			

121/1
MATHEMATICS
PAPER 1
OCTOBER/NOVEMBER 2015

TIME: 21/2 HRS

KANDARA SUB-COUNTY SECONDARY SCHOOLS FORM 3 2015 JOINT EXAMINATION

KENYA CERTIFICATE OF SECONDARY EDUCATION (K.C.S.E)

MATHEMATICS

Paper 1
October/November 2015
Time: 2½ hours

INSTRUCTIONS TO CANDIDATES

- a) Write your name and Admission number in the spaces provided above.
- b) Sign and write date of examination in the spaces provided above...
- c) This paper consists of two sections: Section I and section II
- d) Answer all the questions in Section I and only five questions from Section II.
- e) All answers and workings must be written on the question paper in the spaces provided below each question.
- f) Show all the steps in your calculations, giving your answers at each stage in the spaces provided below each question.
- g) Marks may be given for correct working even if the answer is wrong.
- h) Non programmable silent electronic calculators and K.N.E.C Mathematical tables may be used, except where stated otherwise.
- i) This paper consists of 16 printed pages.
- j) Candidates should check the question paper to ascertain that the pages are printed as indicated and that no questions are missing.

FOR EXAMINER'S USE ONLY

SECTION I

QUESTION	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL
MARKS																	

SECTION II

QUESTION	17	18	19	20	21	.22	23	24	TOTAL
MARKS					•				

GRAND TOTAL

SECTION I (50 MARKS) Answer ALL the questions in this Section in the spaces provided.

1. A woman travelled on a journey by walking, by bus and by matatu. She travelled by bus for ⁴/₅ of the distance, then by matatu for ²/₃ of the rest of the distance then walked the remaining distance. The distance travelled by bus was 55km more than the distance walked. Find the total distance. (4 marks)

2. Use the prime factors of 2800 and 2744000 to evaluate.

(3 marks)

 $\frac{\sqrt[3]{2744000}}{2800}$

3. Solve the inequalities, $4x - 3 \le 6x - 1 < 3x + 10$ and state all the integral values that satisfy the inequalities. (3 marks)

4. The figure below is a net of a cube with some dots on two faces.

Given that the number of dots on pairs of opposite faces add up to 6, fill in the appropriate dots in each of the empty faces. (2marks)

5. Peter paid sh 180 for a shirt after getting a discount of 10%. The shopkeeper made a profit of 20% on the sale of this shirt. What percentage profit would the shopkeeper have made if no discount was allowed?

(3 marks)

6. Simplify
$$\frac{23^{\frac{1}{3}} \div 9^{\frac{-1}{3}}}{\left(\frac{3}{4}\right)^{-1}}$$

(3 marks)

Elimu Bookshop received US \$ 150,000. The money was converted into Kenya shillings in a bank which buys and sells foreign currency as follows.

	Buying in Ksh	Selling in Ksh
1 US \$	87.55	88.75
1 Sterling Pound	149.75	150.25

a) Calculate the amount in Kshs Elimu bookshop received.

(2 marks)

b) The business lady converted the money into Sterling pounds to pay fees for her daughter in London. Calculate the amount of fees paid to the nearest pound.

Factorise and simplify completely.

(3 marks)

$$\frac{2my + xy - y^2 - 2mx}{y^2 - 4m^2}$$

$$\frac{2my + xy - y^{2} - 2mx}{y^{2} - 4m^{2}} + xy - 2mx + 2my - y^{2}}{(y - 2m)} + (y + 2m)$$

$$\frac{x(y - 2m)}{(y - 2m)} + (y + 2m)$$

$$\frac{x(y - 2m)}{(y - 2m)} + (y + 2m)$$

$$\frac{(y - 2m)}{(y + 2m)} + (y + 2m)$$

$$\frac{(x + y)(2m - y)}{(y + 2m)}$$

9. A regular polygon has internal angle of 150° and a side of length 10cm. (2 marks) a) Find the number of sides of the polygon. b) Find the perimeter of the polygon. (1 mark) 10. A circle of radius 4.9cm fits exactly inside a square. Find the area of the space between the circle and (3 marks) square to 2 decimal places. 11. The image of a point Q(1, 2) after a translation is Q¹(-1, 3). What is the co-ordinate of the point R (3 marks) whose image is $R^1(-3, -3)$ after undergoing the same translation.

12. Given that Sin A = $\frac{4}{5}$, Cos B = $\frac{5}{13}$ A and B are acute angles, without using tables calculate Sin B Cos A + Sin A tan B (3 marks)

13. 30 men working for eight hours a day can complete picking tea in ten days. Determine how long it would take twenty men working twelve hours a day to complete the same task. (3 marks)

14. Use logarithm tables to evaluate to 4 significant figures.

(4 marks)

$$\frac{0.5241^{2} \times 83.59}{\sqrt[3]{0.3563}}$$

					•				
				•					
					. :				
									*
				•	•	,			
					,				
•									
			-						
	•		4-						-
				•					
gradus de la companya del companya del companya de la companya de	en ar teng in		× x 5	e gradu ta	weller ja 1946	9 1. st	Par Lite		
						ţ.,			
e version e							· · · · · · · · · · · · · · · · · · ·		
6. A small con	a of boight	Com is s	ust off fro	m'a hiasar	aana ta laa	ua a finir	tum of h	oiaht 1	Sam If th
volume of t	he of neight he smaller co	one is 16	Ocm ³ , find	in a bigger	of the frus	ve a mus tum.	sturn or n		ocin. ii u 3 marks)
			,					`	,
									•
				• •		-			
					÷				
									·
The State of the second	ativi i the sec					1.0		. *	
e distribuie	40000000000000000000000000000000000000								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
e de la composición del composición de la compos	成于"大 学" "开放"								$z = \frac{r}{4} z^{-r}$
e e e e e e e e e e e e e e e e e e e	as offered								
e de la composition della comp	4.300 (27%) (3.40)								
e at le v	4.3. 《 27条 》字段 《 ·								
e et en									
e de la composición del composición de la composición de la composición del composición de la composic									
e de la composition della comp									

SECTION II (50 MARKS) Answer only FIVE questions from this section in the spaces provided

	ech's to Otieno's contribution was 2:3	, determine ;	f
a) How much Koo	ech contributed.		(3 marks
b) The amount of	money put back into the business.		(3 marks
		• •	

18. The table below shows the ages in years of 60 people who attended a workshop.

Age in years	30- 39	40 - 49	50 - 59	60 - 69	70 - 79
No. of people	10	12	18	17	3

a) State the modal frequency.

(1 mark)

b) Calculate the mean age.

(5 marks)

c) Calculate the median age.

(4 marks)

19. a) Find the equation of a straight line passing through the points (3, 2) and (3, 6) giving your answer $x \cdot y$

in the form $\frac{x}{a} + \frac{y}{b} = 1$ where a and b are constant.

(4 marks)

b) State the co-ordinates of point A and B, at which the line in (a) above crosses the x-axis and y-axis respectively. (2 marks)

c) Using the information in (a) and (b) above, find the area of triangle AOB, where O is the origin.
(2 marks)

d) Find the acute angle the line in (a) above makes with the x-axis.

(2 marks)

20. In the figure below OA = a, OB = b. K and N are mid-points of OB and AB respectively. Point C divides OA in the ratio 2:5, while D divides AB in the ratio 2:3.

- a) Express in terms a and b.
 - i) CN

(2 marks)

ii) KD

(2 marks)

b) If OX = OC + pCN and also OX = OK + qKD where p and q are scalars, find the value of p and q.
(5 marks)

c) Deduce the ratio in which x divides KD.

(1 mark)

21. The figure below represents a frustum of a solid cone of base radius 48cm and top radius 16cm. The height of the frustum is 21cm. (Take $\pi = {}^{22}/_7$)

Calculate;

a) The height of the solid cone.

(2 marks)

b) The volume of the solid frustum.

(3 marks)

c) The total surface area of frustum.

(5 marks)

22. In the figure below, the circle centre O is the circumference of triangle PQR and also the inscribed

circle of triangle ABC.

Given that angle BAC = 62° and angle ACB = 44° , calculate;

a) ∠PQR

(2 marks)

b) ∠QPR

(2 marks)

c) ∠POQ

(2 marks)

d) If BC = 10cm, calculate the radius of the circle.

(4 marks)

	to represent 2km, show			manitud, (2 mm/s
•				
			:	
			•	
		•		
				•
1) 5	•			
b) From the scale drawin	g determine;			
i) the distance in kilometr	es of P from S.			(2 marks)
1) the distance in kilometr	es of P from S.			(2 marks)
1) the distance in kilometr	es of P from S.			(2 marks)
1) the distance in kilometr	es of P from S.			(2 marks)
1) the distance in kilometr	es of P from S.			(2 marks)
1) the distance in kilometr	es of P from S.			(2 marks)
i) the distance in kilometr				(2 marks)
ii) the bearing of P from S				(2 marks)
		re kilometres.		
ii) the bearing of P from S		re kilometres.		(2 marks)
ii) the bearing of P from S		re kilometres.		(2 marks)
ii) the bearing of P from S		re kilometres.		(2 marks)
ii) the bearing of P from S		re kilometres.		(2 marks)
ii) the bearing of P from S		re kilometres.		(2 marks)
ii) the bearing of P from S		re kilometres.		(2 marks)

24. The table below shows values for the function $y = 5 + 8x - 2x^2$ for $-2 \le x \le 6$.

x	-2	-1	0	1	2	3	4	5	6
8x + 5									
-2x ²					-				
y									

Complete the table above.

(2 marks)

b) Draw the graph of $y = 5 + 8x - 2x^2$ for $-2 \le x \le 6$.

(3 marks)

c) Use the graph to solve the equation; i) $5 + 8x - 2x^2 = 0$

i)
$$5 + 8x - 2x^2 = 0$$

(1 mark)

ii)
$$-2x^2 + 5x + 3 = 0$$

(3 marks)

d) State the equation of the line of symmetry of the curve $y = 5 + 8x - 2x^2$

(1 mark)

KANDARA SUB-COUNTY SECONDARY SCHOOLS FORM 3 2015 JOINT EXAMINATION

KENYA CERTIFICATE OF SECONDARY EDUCATION (K.C.S.E)

MATHEMATICS (121/1)

Oct/Nov 2015

MARKING SCHEME

1. distance by matatu = ${}^{2}/_{3} \times {}^{1}/_{5} = {}^{2}/_{15}$ distance by walking = $1 - ({}^{4}/_{5} + {}^{2}/_{15}) = {}^{1}/_{15}$ Let the total distance = xkm	B1 B1	Bus = $\frac{4}{5}$, matatu = $\frac{2}{15}$
$\frac{4}{15} x - \frac{2}{15} x = 55$ x = 82.5km	M1 A1	$\int_{15}^{10}/_{15}x = 55$ $x = 82.5 \text{km}$
	4	
2. $2800 = 2^4 \times 5^2 \times 7$ $2744000 = 2^6 \times 7^3 \times 5^3$	B1	prime factors of 2800 and 2744000
$\frac{\sqrt[3]{2744000}}{2800} = \frac{(2^6 \times 7^3 \times 5^3)^{\frac{1}{3}}}{2^4 \times 5^2 \times 7}$	M1	
$= \frac{1}{20} = 0.05$	A1	
	3	
3. $4x - 3 \le 6x - 1$		
$-1 \leq x$	B1	x ≥ -1
6x - 1 < 3x + 10		
$x < 3^2/_3$	B1	$3^2/_3 > x$
Integral values (3, 2, 1, 0, -1)	Di	$(3^2/_3 > x \ge -1)$
, , , , , ,	B1 3	(All the values)
	+	
F ₁ • • •	•	
	B1	✓ pair
• • F ₂	B1 2	\checkmark pair (1 & 5, 2&4, 3&3)
	-	(F1 + F2 = 6 dots)
• Selling price = $180 \times 100 = \text{sh } 200$		(0)
90	Bl	(for sh 200 and sh 150)
Buying price = $180 \times 100 = \text{sh } 150$		
120		
Profit = $200 - 150 = \text{sh } 50$ % profit = 50×100		
76 profit – <u>50 x 100</u> 150	M1	
= 33.33%	A1	(331/3%)
	3	(33/3/0)
	 	
INDARA - TERM 3- 2015		
1 1	((MM) FORM 3 - MS MATHEMATICS

$\frac{\left(2^{3}\times3\right)^{\frac{1}{3}}\div3^{\frac{-2}{3}}}{\left(\frac{3}{2^{2}}\right)}$	M1	(prime factors)
$\left(\frac{3}{2^2}\right)$		
$2 \times 3^{\frac{1}{3}} \times 3^{\frac{2}{3}} \times \frac{3}{2^2}$	M1	simplification
	A1	⁹ / ₂ (A0)
$\frac{2 \times 3 \times 3}{22} = 4 \frac{1}{2} = 4.5$	3	/ ₂ (A0)
7. a) received = 150,000 x 87.55	М1	
= sh 1312500	A1	
b) Fees paid = 1312500	M1	
150.25		
= £87404	A1	
	4	
8. $2my + xy - y^2 - 2mx$		
(2m - y) (y - x) $y^2 - 4m^2 = (y + 2m) (y - 2m)$	M1	factorisation of numerator
$y^2 - 4m^2 = (y + 2m) (y - 2m)$	M1	denominator
-(y-2m)(y-x) = x-y	A1	•
(y + 2m) (y - 2m) y + 2m	3	
260 10 11-	M1A1	
9. $n = \frac{360}{20} = 12$ sides	MITAI	
$\begin{array}{c} 30 \\ P = 12 \times 10 = 120cm \end{array}$	B1	
$P = 12 \times 10 - 120 \text{Cm}$	3	
10.		
•		and the second second
22		
$9.8 \times 9.8 - \frac{22}{7} \times 4.9^2$	M1M1	
96.01 - 75.46		
$A = 20.58 \text{cm}^2$	A1 3 ·	
	3	
11. $T = \begin{pmatrix} -1 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 \\ -2 \end{pmatrix}$	M1	
11. $T = \begin{pmatrix} -1 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$		
	M1	
$R = \begin{pmatrix} -3 \\ -3 \end{pmatrix} - \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$		
(-3) (1) (4)	l 1	
R (-1, -4)	A1	
	3	
		1 1
12. Sin B Cos A + Sin A tan B	1	
$\binom{12}{13} \times \binom{3}{5} + \binom{4}{5} \times \binom{12}{5}$	MIMI	5 4 12 13
$= 804 = 2^{154}/_{325}$	A1	
325	1	3 5
		

13. Number of days =		
$\frac{8}{12} \times 110 \times \frac{30}{20}$	M1	$(^{8}/_{10} \times 10)$ or $(10 \times ^{30}/_{20})$
	M1	seen
= 10 days	<u>A1</u>	
	3	
14. No Log		
$0.5241^2 \qquad \overline{1.7194} \times 2 = \overline{1.4388}$	M1	All logs ✓
83.59 1.9222		(112)
1.3610	M1	(addition and subtraction)
	M1	1.5510 2.2.5510
$\sqrt[3]{0.3563}$ 1.5518 ÷ 3 = $\overline{1.8506}$	A1	1.5518 = 3 + 2.5518
$3.239 \times 10^{1} 3$ 1.5104	Ai	·
(32.39)	4	-
15. xy - Reversed $yx = 10y + x$	M1	for $xy = 20$ and $y-x=1$
(10y + x) - (10x + y) = 9	l	
9y - 9x = 1 $y - x = 1$		
x(x+1) = 20 $x^2 + x - 20 = 0$		
(x-4)(x+5)=0		
x = 4 or -5 No = 45	M1	factorisation
x + 01 -5 140 - 45	<u>A1</u>	
	3	
16. L.S.F = $8:24 = 1:3$,	
V.S.F = 1:27	B1	(V,C,E)
Volume of frustum		(V.S.F)
$V = 160 \times 27 - 160$	MI	Subtraction of two volumes
$=4160\mathrm{cm}^3$	A1	Subtraction of two volumes
	3	
SECTION II		
17 -) (00 000		
17. a) $600,000 : x = 2:3$	M1	
$x = \frac{3}{2} \times 600,000$ $x = \sinh 900,000/-$	Ml	
x - Sit 900,000/-	A1	
b) Total salary = 45000 x 12		
= sh 540,000	M1	
Business = $\frac{20}{100} (3,650,000 - 540,000)$	N/1	
= sh 622,000	M1 A1	
	Ai	
c) Remaining profit		
=3650000 - (622000 + 540,000)	M1	
= 2,488,000	A1	
Koech = $\frac{2}{5}$ x 294,000		
= sh 995,200	B1	
Otieno = $\frac{3}{5}$ x 2,488,000	B1	
= sh 1,492,800		•
	10	
WAND ARA TERRICO AND		

20. a) i) $CN = \frac{5}{7a} + \frac{1}{2}AB$	1	
$= \frac{5}{7}a + \frac{1}{2}(b - a)$ $CN = \frac{3}{14}a + \frac{1}{2}b$	M1 A1	
ii) $KD = KB + BD$		
= $\frac{1}{2}\mathbf{b} + \frac{3}{5}(\mathbf{B}\mathbf{A})$ = $\frac{1}{2}\mathbf{b} + \frac{3}{5}(\mathbf{a} - \mathbf{b})$	M1	
$KD = \frac{3}{5a} - \frac{b}{10}$	A1	
b) $\mathbf{OX} = \frac{2}{7}\mathbf{a} + \mathbf{p}(\frac{3}{14}\mathbf{a} + \frac{1}{2}\mathbf{b})$ $\mathbf{OX} = (\frac{2}{7} + \frac{3}{14}\mathbf{p})\mathbf{a} + \frac{p}{12}\mathbf{b}$	M1	Vector OX
$\mathbf{OX} = \frac{1}{2}\mathbf{b} + \mathbf{q} \left(\frac{3}{5}\mathbf{a} - \frac{b}{10}\right)$ $\mathbf{OX} = \left(\frac{1}{2} - \frac{q}{10}\right)\mathbf{b} + \frac{3q}{5}\mathbf{a}$	M1	Vector OX
$\therefore \frac{1}{2} - \frac{q}{10} = \frac{p}{2}$		
$q + 5p = 5$ $\frac{2}{7} + \frac{3}{14}p = \frac{3q}{5}$	M1	for two simultaneous eqns
42q - 15p = 20 $3q + 15p = 15$	M1	solving
$ \frac{5q + 15p - 15}{45q} = 35, q = \frac{7}{9} $ $ p = \frac{38}{45} $	A1	$(q = {}^{7}/_{9}, p = {}^{38}/_{45})$ both answers
c) $KX = \frac{7}{9}KD$ KX : XD = 7:2	B1	
	10	
21. a) $\frac{48}{16} = \frac{h+21}{h}$	M1	
h = 10.5cm	A1	
b) $V = \frac{1}{3} x^{22} / x 48^2 x 31.5 - \frac{1}{3} x^{22} / x 16^2 x 10.5$ V = 76032 - 2816 $V = 73216 \text{cm}^3$	M1 M1	for two volumes subtraction
	A1	
c) $L = \sqrt{48^2 + 31.5^2} = 57.41$ $L = \sqrt{16^2 + 10.5^2} = 19.14$	B1	for 57.41 and 19.14
S.A = ${}^{22}/_7$ x 48 x 57.41 - ${}^{22}/_7$ x 16 x 19.14 = 8660.71 - 962.47	M 1	two surface areas curved
$S.A = 7698.24cm^2$		
$\frac{\text{Total S.Area}}{^{22}/_7} \times 48^2 + 16^2 + 7698.24$	MI	surface area of upper and
Total S. $A = 15743.95 \text{cm}^3$	A1	lower circles
	10	
ANDARA TERMS 2016	1	

22. a) ABC = $180 - (62 + 44) = 74^{\circ}$ BQP = $180 - 74 = 53^{\circ}$	B1	
$CQR = 180 - 44 = 68^{\circ}$		
$\angle PQR = 180 - (53 + 63) = 59^{\circ}$	B1	
b) APR = $\frac{180 - 62}{2}$ = 59°	B1	
$QPR = 180 - (53 + 59) = 68^{\circ}$	B1	
c) OBQ = ${}^{74}/_2 = 37^{\circ}$ BOQ = 90 - 37 = 53° POQ = 2 x 53 = 106°	B1 B1	
d) $f/x = \tan 37^{\circ}$, $r = x \tan 37^{\circ}$ $r = y \tan 22^{\circ}$ i) x + y = 10ii)	B1	for two simultaneous eqns
$x + \frac{x \tan 37^{\circ}}{\tan 22^{\circ}} = 10$	M1	
2.865x = 10 x = 3.49cm $r = 3.49 tan 39^{\circ}$. A1	
r = 2.63cm	B1 10	
23. a) Given scale 1cm = 2km		
N /	B1	for \checkmark PQ(8 \pm 0.1cm)
	B1	for \checkmark QR (6.1 ± 0.1) am
	B1	for \checkmark RS (6 \pm 0.1)cm
N ,665 6.1±0.1		
40°/ 5.1 ±0.1 R	·	
P		
TRAIN N		
s		
b) i) Distance of P from S = 10.8 ± 0.1 cm (21.6 ± 0.2) km	B1 B1	(10.7 - 10.9) cm (21.4 - 21.8)km
ii) $\angle PSN = 74 \pm 1^{\circ}$ Bearing of P from $S = 286 \pm 1^{\circ}$	B1 B1	
KANDARA - TERM 3- 2015 6		(MM) FORM 3 - MS MATHEMATICS I

c) Area of $\triangle PQR = \frac{1}{2} \times 10.2 \times 12.2$
$= 62.22 \text{km}^2$
Area of $\triangle PRS = \frac{1}{2} \times 10.2 \times 12 \sin 150^{\circ}$
$=30.6\mathrm{km}^2$
Area of ranch PQRS = $62.22 + 30.6$
$=92.82km^2$

M1	

M1

A1 10

B1

24.
$$y = 5 + 8x - 2x^2$$

x	-2	-1	0	1	2	3	4	5	6
8x + 5	-11	-3	5	13	21	29	37	45	53
$-2x^2$	-8	-2	0	-2	-8	-18	-32	-50	-72
у	-19	-5	5	11	13	11	5	-5	-19

B2 for all values

✓ values for atleast 5 values

- ✓L1
- **B**1
- **B**1

x 0 1 -1 y 2 5 -1

ii) $y = 5 + 8x - 2x^2$ $0 = 3 + 5x - 2x^2$ $y = 3x + 2 \checkmark$

c) i) $x = -0.6 \pm 0.1$ and $x = 4.6 \pm 0.1$

- $x = -0.6 + 0.1 \text{ or } 3.0 \pm 0.1 \checkmark$
- d) Line of symmetry $x = 2\checkmark$

- B1
- B1 10