30.6.1 Chemistry Paper 1 (233/1)

1. Observations:

- Crystal dissolves
- Purple colour spreads in the way

Explantion: The crystal break into small particles of potassium manganate (VII) which move in all directions.
2. Mass of hydrated salt $=(33.111-30.296)=2.815 \mathrm{~g}$

Mass of anhydrous salt $=(32.781-30.296)=2.485 \mathrm{~g}$
Mass of water $=(2.815-2.485)=0.330 \mathrm{~g}$
$33.111-32.781=0.330 \mathrm{~g} \quad$ (3 marks)
$\mathrm{CaSO}_{4} \quad: \quad \mathrm{xH}_{2} \mathrm{O}$
Mass $2.485 \quad 0.330$
Moles $\frac{2.485}{136}=0.0183 \quad \frac{0.330}{18}=0.0183$
Ratio $\frac{0.0183}{0.0183}=1 \quad \frac{0.0183}{0.0183}=1$
Formula
$\mathrm{CaSO}_{4} \mathrm{H}_{2} \mathrm{O}$
(3 marks)
3. I The red litmus paper turns white/the litmus paper is bleached.

II Put a filter paper dipped in acidified potassium dichromate (VI) into the gas.
III The bromine water is decolourised.
4. (a) $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{COO}^{-} \mathrm{Na}^{+}$or $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{2}^{-} \mathrm{Na}^{+}$
(b) Soap detergent or Soap
(c) $\quad\left(\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{COO}^{-}\right)_{2} \mathrm{Ca}^{2+}$ or $\left(\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{C}_{0} 0^{-}\right)_{2} \mathrm{Mg}^{2+}$
(3 marks)
5. R.M.M of $\mathrm{Ca} 3(\mathrm{PO} 4) 2$
$\mathrm{Ca}=40 \times 3=120$
$\mathrm{P}=31 \times 2=62$
$\mathrm{O}=16 \times 8=\frac{128}{310}$
$\mathrm{H}_{3} \mathrm{PO}_{4}$
$\mathrm{H}=1 \times 3=3$
$\mathrm{P}=31 \times 1=31$
$\mathrm{O}=16 \times 4=\underline{64}$
98
I mole $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ gives 2 moles of $\mathrm{H}_{3} \mathrm{PO}_{4}$
310 g of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ gives $2 \times 98 \mathrm{~g}$ of $\mathrm{H}_{3} \mathrm{PO}_{4}=196 \mathrm{~g}$
Therefore $155 \mathrm{x} 1000 \mathrm{~g} \quad \begin{aligned} & \frac{2 \times 98 \times 155 \times 1000}{310} \\ &= 98000 \mathrm{~g} \\ &=98 \mathrm{~kg}\end{aligned}$
(2 marks)
6.

- Propanol
(2 marks)
- Butanoic acid

7. (a) Atoms of the same element having different masses.
(b) $(18-8)=10$ neutrons
(2 marks)
8. (a) A black solid.
(b) $\quad \mathrm{FeS}_{(\mathrm{s})}+2 \mathrm{HCI}_{(\mathrm{aq})} \quad \mathrm{FeCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$
(c) The powder has a larger surface area than the iron fillings hence the reaction is faster.
(3 marks)
9. $\mathrm{Zn}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \quad-\mathrm{ZnSO} \mathrm{O}_{4(\mathrm{aq})}+\mathrm{H} 2_{(\mathrm{g})}$
$\mathrm{Zn}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{l})} \quad-\mathrm{ZnSC}\left(\mathrm{aq)}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\right.$
(2 marks)
10. Magnesium burns in air to form MgO and $\mathrm{Mg}_{3} \mathrm{~N}_{2}$
$\mathrm{Mg}_{3} \mathrm{~N}_{2}$ reacts with water to liberate ammonia gas
(2 marks)
11. (a) Ionic or Electrovalent
(b) $\quad W$: has 7 electrons in its outermost energy level and hence easily gains an electrons to complete the octet.
(3 marks)
12. (a) Oxygen
(b) The pH decreases

HOCI decomposes to give more HCI in the mixture.
(3 marks)
13. Pass product E over anhydrous copper (II) Sulphate (1) which turns from white to blue.

Or
(Use Cobalt Chloride (anhydrous) which turns from blue to pink.
14. (a) G
(b) $\quad \mathrm{A}_{1}$
(2 marks)
15. $J:$ the solubility of the substance decreases with increase with temperature.
(2 marks)
16.

- Heat the metal in air to form the oxide (CuO).
- Add excess dcl HCI to the oxide to get CuCl_{2}.
- Concentrate the filtrate and leave to crystalise.
- Filter and dry the crystals at room temp/between pieces of filter paper.

17. (a) Amphoteric
(b) Lead, Zinc, and aluminium
(3 marks)
18. (a) Position for silicon.

(b) U
(c) $\quad 2 \mathrm{Q}_{(\mathrm{s})}+\mathrm{T}_{2(\mathrm{~g})} \quad \longrightarrow 2 \mathrm{QT}_{2(\mathrm{~g})}$
19. (a) $\mathrm{Zn}_{(\mathrm{s})} \mathrm{Zn}_{(a q)}^{2+} / / \mathrm{Ag}_{(a q)}^{+} / \mathrm{Ag}_{(\mathrm{s})}^{-}$

$$
\mathrm{Cu}_{(\mathrm{s})} \mathrm{Cu}_{(a q)}^{2+} / / \mathrm{Ag}_{(a q)}^{+} / \mathrm{Ag}_{(\mathrm{s})}
$$

(b)

- The solution changes to blue because Cu metal dissolves to form

$$
\mathrm{Cu} 2+{ }_{(a q)}^{2+}
$$

- Metal silver is deposited on the sides of beaker because Ag^{+}reduced to $\mathrm{Ag}_{\text {(s) }}$

20. (a) At constant temperature and pressure, the rate of diffusion of a gas is inversely proportional to the square root of its density.
(b) $\quad \frac{R W}{R X}=\sqrt{\frac{M M X}{M M W}}=\sqrt{\frac{44}{16}}$

$$
\begin{aligned}
& \frac{12.0}{R X}=\frac{\sqrt{44}}{4} \\
& R X=\frac{12 \times 4}{\sqrt{44}}=\frac{48}{6.63}=7.24 \mathrm{~cm}^{3} \mathrm{~S}^{-1}
\end{aligned}
$$

21. (a) $\mathrm{Cu}^{2+}(1)$ moving towards the cathode .
(b) $\left.40 \mathrm{H}^{-}-4 \mathrm{e} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(1)}+\right)_{2(\mathrm{~g})}{ }^{-}$
(3 marks)
22.

23. The brown colour of the mixture intensifies/increases and the green colour of the mixture fades/decreases. Iron (II) is converted to Fe^{3+}
24. (a) ${ }_{2}^{4} \mathrm{H}_{\mathrm{e}}$
(b) (i) $\quad \mathrm{Z}_{1}=235,(1 / 2) \mathrm{Z}_{2}=54$
(ii) Nuclear fission
25. (a) Cooling
(b) Latent heat of fusion
26.
29.
(a) $\mathrm{I}-\mathrm{Pb}^{2+}$
$\mathrm{II}-\mathrm{CO}_{3}^{2-}$
(b) $\quad \mathrm{PbO}_{(\mathrm{s})} \quad+2 \mathrm{H}_{(a q)}^{+} \rightarrow \mathrm{Pb}_{(a q)}^{2+}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
(3 marks)
(a) $\quad \mathrm{Mg}(0 \mathrm{H})_{2(\text { ag })} \quad+2 \mathrm{HCI}_{\text {(aq) }} \rightarrow \mathrm{MgCl}_{2(\text { aq) }}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ or mole ratio

No of moles of acid $=\frac{0.1 \times 23}{1000}=0.0023$
Moles of $\mathrm{Mg}(\mathrm{OH})_{2}$ in antacid

$$
=0.00115 \times 58=0.067 \mathrm{~g}
$$

(b) $\quad \%$ of $\operatorname{Mg}(\mathrm{OH}) 2$ in anticid
$\mathrm{Mg}(\mathrm{OH})^{1}{ }_{2}=\frac{0.067}{0.50} \times 100=13.4 \%$
(3 marks)
(a) (i) C_{-1} Cryolite
(ii) D_{-1} Electrolysis
(2 marks)
(b)

- Good conductor.
- Meleable.
- Light.
- Does not corrode easily.
- High melting point.
- Does not rust.
(1 mark)
(a) Gas syringe/graduated gas cylinder.
(b) (i)

(ii) The molecules of the reactants have higher energy the reaction is faster.

(3 marks)

30. It burns to form SO 2 which is a pollutant as it causes breathing problems and acid rain.
31. (a) Neutralization
(b) (i) Calcium hydrogen carbonate.
(ii) Drying agent.
(3 marks)
30.6.2 Chemistry Paper 2 (233/2)
32.

(b) (i) Moles of methane in the

$$
\begin{aligned}
\text { Cylinder }= & \frac{35.2 \times 5 \times 1000}{100 \times 16} \\
& =110 \mathrm{moles}
\end{aligned}
$$

(4 marks)
(c) (i) Global warming
(ii) I $\mathrm{N}_{2} \mathrm{O}=$ Ammonium fertilizer (nitrate)

II $\mathrm{CCl}_{3} \mathrm{~F}=$ Aerosals, Sprays, Propellants, Refrigerators (3 marks)
2. (a) (i) $2 \mathrm{KNO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KNO}_{2}(\mathrm{~s})+\mathrm{O}_{2(\mathrm{~g})}$
(ii) $\quad 2 \mathrm{AgNO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$
(b) (i) Period 2: It's electronic arrangement is 2, 3 and this means that it is the $2^{\text {nd }}$ energy level
(ii) I. Across a period from left to right the nuclear charge increases exerting grater pull on the available electrons resulting in reduction of atomic radius.
(2 marks)
II. A4 gains an electron: The incoming electron is reppelled by other electrons in the atom.
(2 marks)
3. (a)
(a)

- Filtration of air.
- Passing through sodium hydroxide.
- Air cooled to become liquid.
- Liquid air is allowed to evaporate . (4 marks)
(b) (i) Nitrogen (II) oxide
(1 mark)
(ii) $\quad \sqrt{\begin{array}{c}\text { Oxidation } \\ H 3(g)+\mathrm{CuO}_{(\mathrm{S})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}\end{array}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cu}_{(\mathrm{S})}}$
(iii) $\quad \mathrm{NH}_{4} \mathrm{NO}_{3(\mathrm{~s})} \rightarrow \mathrm{N}_{2} \mathrm{O}_{(\mathrm{g})}+2 \mathrm{H}_{2} \mathrm{O}_{(1)}$
(2 marks)
(1 mark)
(iv) Fertilizers making explosives.
(c) (i) $\quad \mathrm{G}$ or G^{2+}
(1 mark)
(ii) $\quad \mathrm{E}_{\text {(aq) }}^{2+}+20 \mathrm{H} \underset{\text { (aq) }}{ } \rightarrow \mathrm{E}(\mathrm{OH})_{2(\mathrm{~s})}$
(1 mark)

4. (a) (i) When a change is made to the conditions of a system is dynamic equilibrium the system moves so as to oppose that change.
(1 mark)
(ii) Pressure has no effect on the position of the equilibrium since the number of moles of gaseous reactants is equal to number of moles of gaseous products.
(iii) $\Delta \mathrm{H}$ is Negative: Since lowering of temperature moves the equilibrium in the direction in which heat energy is absorbed.
(b)
(i) MnO_{2}
(1 mark)
(ii) Decomposition at 24 secs is $1.428 \mathrm{~cm}^{3} / \mathrm{sec}$
(iii) The reactant has been used up after 50 secs
5. (a)
$\mathrm{H}_{\mathrm{H}}^{\mathrm{C}} \underset{\mathrm{C}}{\mathrm{H}}-\mathrm{C} \equiv \mathrm{C} \quad \mathrm{H}-$
or $\mathrm{CH}_{3} \mathrm{CCH}$
(1 mark)
(b) (i) Heat $\quad 700-900 \mathrm{k}$

Use of catalyst such alumina $\left(\mathrm{AI}_{2} \mathrm{O}_{3}\right)$ or Selica $\left(\mathrm{SiO}_{2}\right)$
(ii) H - is ethane
$\mathrm{CH}_{3} \mathrm{CH}_{3}$ or $\mathrm{C}_{2} \mathrm{H}$
(1 mark)
(iii) I. They pollute environment produces poisonous gases. (1 mark)
i. Hydration.
(1 mark)
ii. Ethyl Propanoate.

O

$$
\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{n}=16,800
$$

(2 marks)
(iv) $\quad \therefore \mathrm{n}=\frac{16,800}{28}=600$ monomer
(7 marks)
(c) (i) \boldsymbol{M} : is unsaturated hydrocarbon and hence it undergoes addition reaction.
(2 marks)
(ii) $\quad N$: this because N is an acidic compound.
(2 marks)
6. (a) (i) $\mathrm{Both}_{\mathrm{OH}}{ }^{-}$and SO_{4}^{2-} migrate to the anode where OH^{-}are preferentially discharged forming oxygen gas.
(2 marks)
(ii) Copper anode would dissolve to give Cu^{2+} ions as less energy is required for this process. (2 marks)
(b) (i) Copper ore $\quad \begin{aligned} & \text { Copper pyrites } \\ & \text { Copper glance }\end{aligned}$

Malachite
(1 mark)
(ii) $\mathrm{Cu}_{(\mathrm{aq})}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}_{(\mathrm{s})}$
(1 mark)
(iii) $\mathrm{Q}=\mathrm{IT}$
$0.5 \times 18 \times 60$
$=540$ coulombs
1 mole of electronics deposits 1 mole of silver

$$
\begin{aligned}
96500 \mathrm{C} & \equiv 108 \mathrm{~g} \text { of silver } \\
540 \mathrm{C} & =\frac{108 \times 540}{96500} \\
& =0.604 \mathrm{~g}
\end{aligned}
$$

(iv) Prevent rusting.

Decoration/improve appearance.
7. (a) (i) This is the heat change ($(\Delta \Delta \mathrm{H}$ when one mole of a substance is formed from its constituent elements under standard conditions.
(1 mark)
(b) (i) Heat of combustion of hydrogen.
(ii)

Reaction co-ordinate
(3 marks)
(iii)
$2 \mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{\mathrm{x}} \mathrm{O}_{(\mathrm{c})} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}+\frac{7}{2} \mathrm{O}_{2(\mathrm{~g})} \Delta \mathrm{H}=156 \mathrm{kJmol}^{-1}$
$2 \mathrm{C}_{(\mathrm{s})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})} \Delta \mathrm{H}=788 \mathrm{kJmol}^{-1}$
$3 \mathrm{H}_{2(\mathrm{~g})}+\frac{7}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad \Delta=858 \mathrm{kjmol}^{-1}$
$\overline{2 \mathrm{C}_{(\mathrm{s})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})} \quad \Delta \mathrm{H}=-86 \mathrm{kjmol}^{-1}}$
or if compressed
(2 marks)
(iv) I. Heat change $=\frac{500 \times 21.5 \times 4.2}{1000} \mathrm{~kJ}$

$$
=45.15 \mathrm{~kJ}
$$

II. No. of moles of ethane

$$
\frac{45.15}{1560}=0.0289423 \text { moles }
$$

Therefore mass of ethane $=0.0289423 \times 30 \mathrm{~g}$

$$
=0.868269 \mathrm{~g}
$$

$$
=0.9 \mathrm{~g}
$$

30.6.3 Chemistry Paper 3 (233/3)

Procedure A

Table 1

Time (min)	0	$1 / 2$	1.0	1.5	1.0	2.5	3.0	3.5	4.0	4.5	5.0
Temperature ${ }^{\circ} \mathrm{C}$)	19	18.5	18.0	18.0	18.0	X	13.0	13.0	13.5	13.5	14.0

(iii) $\Delta \mathrm{H}=20 \times 4.2 \times 6$

Procedure B

Table 2
(i) $\frac{16.2+16.2}{2}=16.2 \mathrm{~cm}^{3}$
(1 mark)
(ii)

$$
\begin{array}{llll}
\text { I } & \frac{16.2 \times 0.1}{1000} & = & 0.00162 \mathrm{~m} \\
\text { II } \quad \text { Moles of } \mathrm{HCI} & = & \text { Moles of } \mathrm{NaOH} \\
& & = & 0.00162
\end{array}
$$

(1 mark)
(1 mark)

$$
\text { III } \quad 0.00162 \times 10=0.0162 \mathrm{~m}
$$

(1 mark)

$$
\text { IV } \frac{20 \times 2}{1000} \quad 0.04
$$

(1 mark)

$$
\mathrm{V} \quad 0.04-0.00162=0.00238
$$

(1 mark)
(c) 0.0238 moles $=504$

1 mole $\quad=\quad \frac{504}{0.0238} \times \frac{1}{1000}$

$$
=\quad+21.176 \mathrm{kjmol}^{-1}
$$

(2 marks)
2.

Observations	Inferences	
(a) - Green solid turned black. - Colourless liquid condenses on cool part water of crystallization. - Blue litmus paper turned pink. - Red litmus paper remains the same.	- Solid d is hydrated or contains water of crystallization. - Acidic gas is produced	(3 marks)
(b) - No effervescence. - Black solid reacts to form a green solution.	- Black solid is basic. - Coloured ion present i.e Fe^{2+} orCu ${ }^{2+}$.	(2 marks)
(c) (i) - Blue precipitate formed. - Re-dissolves in excess to form a deep. blue/Royal blue solution.	- Cu^{2+} present.	(2 marks)

Observations	Inferences
(ii) - Effervescence occurs. - Brown solid deposited. - Colourless formed. - Green solution turns. - Test-tube gets warm.	- E is a metal more reactive than copper or E displaces Copper or E reduces Cu^{2+} to Cu . (2 marks)
3. (a) Yellow smoky flames/sooty flame.	F is along chain hydrocarbon or an unsaturated organic compound. (1 mark)
(b) Dissolves to form a colourless.	It is probably a soluble salt or Polar organic compound. (2 marks)
(c) (i) - Effervescence occurs. - Colourless gas given out.	Compound is acidic -COOH or H^{+}or $\mathrm{H}_{3} \mathrm{O}_{+}$ (2 marks)
(ii) Orange/Yellow colour persists.	Absence of Hydroxyl group. (2 marks)
(iii) $\mathrm{KMnO}_{4}(\mathrm{aq})$ is decoloursied.	$\rangle_{C}=\mathrm{C}$ or $-\mathrm{C} \equiv \mathrm{C}$ - present. (2 marks)

