10.2 **Physics Paper 2 (232/2)**

1.

Figure 1

Figure 1 Image (lateral inversion);

(1 mark)

(accept full line)

2.

Pithballs repelling

(1 mark)

- 3. Mica raises capacitance; hence lower potential difference; since V = Q/C but Q is constant.
- 4. A Carbon rod (+);

(1 mark)

В Manganese (VI) oxide

(1 mark)

5. Manganese (IV) oxide is a depolarizer/oxiding agent; (1 mark)

6. Hammering causes domains/domains to vibrate; As they settle, some face North South due to earth's magnetic field;

(2 mark)

7. When S is closed, current flows in solenoid magnetizing the iron core; this attracts the iron armature closing the contacts; this causes current to flow in the motor circuit; Motor keeps running continuously; (3 marks)

339

- 8. Steel would remain permanently magnetized causing current in mortor circuit to remain (when S is open. (2:
- 9. (a)

Figure 3

Any two correct vertical lines

(1

(3

(1

(1

19

18

(b) $2.5\lambda = 10 \text{ x } 5$ $\lambda = 20 \text{ cm};$

10.

Figure 4

20

Figure 4

11.

$$P = \frac{V^2}{R}$$

$$= \frac{6 \times 6}{4}$$

$$= \frac{36}{4} = 9W$$
(2)

21

(b

- 12. Radiowaves Microwaves Yellow light Gamma rays;
 - 13. High voltage leads to low current hence low power (I²R) losses; (1
 - 14. The minimum frequency of an incident radiation to cause emission of photo electrons.

340

SECTION B

15. (a)

(i) Does not obey ohm's law;. (1 mark)
Graph is non-linear i.e. current is not directly proportional to p.d.; (1 mark)

(ii) at I = 1.5A R = gradient of tangent at I $= \frac{9.2 - 4.8}{3.6 - 0.1}$ $= \frac{4.4}{3.5}$ $= 1.26\Omega \pm 0.1$;

(2 marks)

at I = 3.5A R = gradient of tangent at I $= \frac{9.4 - 7.2}{5.4 - 1.5}$ $= \frac{2.2}{3.9}$

 $= 0.56\Omega \pm 0.1$;

(2 marks)

(iii) R decreases as I increases;

(1 mark)

(iv) Change (increase) in temperature;

(1 mark)

(b) (i)
$$V_{total} = 1.6 + 1.6 + 1.6 = 4.8V = E;$$
 (1 mark)

(ii) Let r to be the combined internal resistance

Using E = I (R + r);

$$4.8 = 0.32 (11.4 + r);$$

for one cell, $r = \frac{15 - 11.4}{3}$

$$= 1.2\Omega \tag{3 marks}$$

- 16. (a) The point at which rays close to and parallel to the principal axis converge or seem to diverge from after striking the lens; (1 mark)
 - (b) (i)

Screen Lens Candle Lens holder Metre rule

18

- Candle is placed at a certain distance from the lens. The distance between the (ii) screen and the lens is adjusted until a sharp image is focused on screen.
- The distance of candle from lens (U) is measured; (iii) The distance of screen from lens (V) is also measured;

(3 marks

19

The values of U and V are substituted in the equation (iv)

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

f is then computed as

$$f = \frac{uv}{u+v}$$

(2 marks

20

2

(t

 $\frac{1}{v} = \frac{1}{f} - \frac{1}{u}$ $\frac{1}{v} = \frac{1}{-20} - \frac{1}{30}$ $\frac{1}{v} = \frac{-3-2}{60}$ $\frac{1}{v} = \frac{-5}{60}$ v = -12 $M = \frac{v}{u}$

$$M = \frac{1}{u}$$

$$= \frac{-12}{30}$$

$$= 0.4$$

(4 marks

The production of induced e.m.f when the magnetic flux linking a circuit is 17. (a) changed;

(1 mark)

P - brushes (b) (i) Q - slip rings

(ii)

(1 mark)

(iii) Increasing number of turns/coils;Increasing speed of rotation;Increasing strength of field;Winding the coil on soft iron core.

Any two correct

(2 marks)

(c) (i) $Vs = 200 \times 0.5$ = 100V;

(1 mark)

(ii) $\frac{N_p}{N_s} = \frac{V_p}{V_s}$ $V_p = \frac{100}{10} \times 1 = 10V$

(2 marks)

(iii) $\frac{V_p}{V_s} = \frac{I_s}{I_p}$ $\frac{10}{100} = \frac{0.5}{I_p}$ $I_p = \frac{0.5 \times 100}{10}$ $I_p = 5A$

(2 marks)

- 18. (a) -Cathode rays have charge but e.m radiations don't have charge;
 - -Cathode rays are particles and have a mass but e.m radiations are waves;
 - -Cathode rays travel at a speed depending on the accelerating voltage but e.m radiations travel at the speed of light in vacuum;
 - Different in the mode of production.

(any two correct) (2 marks)

(b) (i) M - grid;

N - accelerating anode/anode/vacuum;

(2 marks)

18

19

(ii) Cathode is heated by filament; electrons are released from cathode; by thermionic emission

(2 mark

- (iii) (I) across Y-Y plates.
 - (II) across X-X plates.

(2 mark

(iv) to reduce collisions, (hence ionization) with air molecules in the tube.

(1 ma**rl**

(c) (i) peak-to-peak voltage = 5×2 = 10v

(ii)

19. (a) α - radiation; short range with intense ionization hence thick tracks;

(2 mark

(b) No. of half-lifes = $\frac{19.15}{3.83}$ = 5

Activity

Days	0	1 3.83	2 7.66	3 11.49	4 15.32	5 19.15
Activity	1.6×10^3		4 x 10 ²	2 x 10 ²	1 x 10 ²	0.5×10^2

Activity

 $= 0.5 \times 10^{2}$

= 50 disintegrations per second

(Ł

2

20

(c) A semiconductor in which impurities have been added to change conductivity.

(1 mark

(2 marks

(d) By connecting it in forward biased mode (i.e. P to + and n to -)

(1 mark

(e)

(i) Correct diode direction;

(2 marks)

(ii) Across QS;

(1 mark)

10.3 Physics Paper 3 (232/3)

1. Part A

(e)

(f)

(a) Eo = $3.0 \pm 0.2V$

(1 mark)

(d) Table 1

AO = Bo = Xcm	25	30	35	40	45	50
$p.d \sqrt{(V)}$	0.58	0.66	0.74	0.80	0.90	0.92
$\frac{1}{x}$ (Cm ⁻¹)	0.04	0.033	0.029	0.025	0.022	0.02
$\frac{1}{v}$ (V ⁻¹)	1.72	1.52	1.35	1.25	1.11	1.10

for V
$$\frac{1}{2}$$
 mark for each correct value - (3 marks) $\frac{1}{x}$ 1 mark for at least 4 correct values - (1 mark) $\frac{1}{v}$ 1 mark for at least 4 correct values - (1 mark) graph (see attached) - axes labelled + units - (1 mark) - suitable scale - (1 mark) - points plotted $\frac{1}{2}$ mark for 4 points - (2 marks) - straight line - (1 mark) Slope - correct interval $\frac{\Delta y}{\Delta x}$ (1 mark) correct evaluation (1 mark)

(g) h correctly evaluated from $\frac{8}{E_o S}$

 $S = 34 \pm 3$

substituting

(1 mark)

(1 mark)

345

(1 mark) evaluating 1 PART B 1 (1 mark) OM and ON shown on outline. (i) $\angle M\ddot{\mathcal{O}}N = 2A = 144\frac{1}{4}$ (1 mark) q correctly evaluated (ii) Total (19 marks) 2. PART A 1 (1 mark) $M_1 = 53.5g$ (a) (1 mark) $M_2 = 73.0g$ (b) (1 mark) Correct mass liquid L = 19.5 g. (c) density = evaluate from candidates values of M_1 and M_2 PART B 1 Table 2 (f) 2.5 3.0 3.5 4.0 4.5 0 0.5 1.0 1.5 2.0 Time in minutes 71 70 69 75 74 72.5 79 77.5 76 80 Temperature of W(\frac{1}{4}C) 64.5 62.5 61 72 70 68 66 Temperature of L(1/4C) 80 76 75 9.5 7.5 8.5 9.0 10.0 7.0 8.0 6.0 6.5 5.0 5.5 62.5 61.5 61 60 63.5 66 65 64.5 68 67 59 2 Correct temperatures of distilled water (3 marks 6 points x (1 mark) 5 to 9 points Correct temperatures of L (3 marks 8 and more (1 mark 4 to 7 points (h) Graphs (see attached graphs) (1 mark axis labelled + units (i) appropriate scale points plotted correctly (2 mark 6 correct points (1 mark 3-5 correct points (1 mark smooth curve

points plotted correctly

(ii)

- 6 correct points (2 marks) - 3 - 5 correct points (1 mark) smooth curve points (1 mark) (i) (i) (value obtained from the graph (1 mark) (value obtained from the graph (1 mark) $\frac{4.2 \times 2.5}{0.78 \times 4.5}$ correct evaluation (j) (1 mark) $r=3.0\pm0.1$ (1 mark) (20 marks) Total