4.7.2 Chemistry Paper 2 (233/2)

Qn No.	Responses	Marks
1101		
1	(a) $ (i) C_n H_{2n} - alkyne_{\checkmark 1} $	(1 mark)
	(i) $C_n H_{2n}$ - alkyne \checkmark_1 (ii) $C_n H_{2n}$ - alkene \checkmark_1	(1 mark)
	(b) (i) Solid because it is saturated. ✓1	(1 mark)
	(ii) I. CH ₂ OHCHOHCH ₂ OH ✓ 1	(1 mark)
	II. $CH_3(CH_2)_{16}COONa \checkmark 1$	(1 mark)
	III. Cleaning agent /.cleansing agent ✓ 1	(1 mark)
	(c) (i) Calcium carbide ✓ ½ and water. ✓ ½	(1 mark)
	(ii) $CaC_{2(s)} + H_2O_{(s)} \rightarrow Ca(OH)_{2(aq)} + C_2H_{2(g)} \checkmark 1$	(1 mark)
	(d) (i) When many unsaturated molecules called monomers combine to form a giant / macro molecule of high relative molecular mass called a polymer. ✓ 1	(1 mark)
	(ii) H CH3 H CH3 H CH3 C C C C C C C C C C C C C C C C C C C	(1 mark)
	(iii) • Used as a glass substitute; ✓ 1	(1 mark)
	• Electronic instruments housing;	
	Wind screen;Safety glasses;	
	 vehicle headlamps; 	
	Bullet proofing.	

(iv)	
 Emit toxic fumes when burned affecting human life. ✓ ½ They are non-biodegradable hence pollutes the environment. ✓ ½ Accelerates fires when burned / highly flammable. 	
(Any two correct @½ mk)	(1 mark)
2(a)	
 (i) G√1 - Contains delocalized electrons√1 present in solid and molten state. (ii) In solid state, the ions are rigidly held in position and cannot move, hence will not conduct.√1 	(2 marks)
In molten/aqueous state, the ions are mobile and will be able to conduct electric	
current. ✓ 1 (b) (i)	
•The blue electrolyte fades and finally changes from blue to colourless. ✓½	
• Effervescence / bubbles of a colourless gas. ✓ ½	(2 marks)
• A brown deposit forms on the cathode. ✓ ½	
(ii) $4OH^{-}(aq) \rightarrow O_{2(g)} + 2H_2O_{(l)} + 4e^{-} \checkmark 1$	(1½ marks)
(iii) The pH will change from 6 to less than 4 is the new time as betien will be said to 6	(1 mark)
(iii) The pH will change from 6 to less than 4 i.e. the resulting solution will be acidic. ✓ ½	(½mark)
(c) With copper electrodes:	
Anode will go into solution as copper ions hence it decreases in mass/size. ✓ ½	(½ mark)
Brown deposit forms at the cathode hence the cathode increases in mass. ✓ ½	(½mark)
(d) (i) This is the coating of an article / object with another metal by electrolytic method./	(1 mark)
electrolysis. ✓ 1	

(ii) To prevent articles from rusting and to make them attractive.	Т
(ii) to prevent actions from rusting and to make them attractive.	(1 monts)
3 (0 (0 0)	(1 mark)
(iv) Quantity of electricity = $\frac{3}{2}$ x 60 x 60 x 0.6 \checkmark 1	
= 3240 coulombs 1/2	*.
$108g Ag \equiv 96,500 \text{ coulombs}$	
? $\equiv 3240 \text{ coulombs}$	
: — 3240 coulonios	
108 x 3240	
$= \frac{108 \times 3240}{96,500} \times 1$	
$= 3.626g \frac{4}{2}$	
OR	
06×15×60×109	
$=\frac{0.6\times1.5\times60\times108}{96,500}\checkmark2\frac{1}{2}$	
$= 3.626 \text{g} \checkmark \frac{1}{2}$	
= 3.020 g v / ₂	(3 marks)
9	
3 (a) (i) To remove oxide layer on the metal. ✓ 1	(1 mark)
()()	(1 mark)
(ii) Beaker I:	
Bubbles of a colourless gas / effervescence; ✓ 1	
• Solution turns green;	(1 mark)
• the size of iron rod decreases√.	(1 mark)
Beaker II:	(1 mark)
• The solution remained colourless. 1	(1 mark)
 No bubbles/effervescence 	
(iii) Beaker I:	
Iron is above hydrogen in the reactivity	
Series therefore will react with the acid to form iron(II) sulphate (FeSO ₄)	(1 mark)
sulpliate (reso ₄)	(
which is green and produces hydrogen gas. ✓ 1	
Community and Barr Barr. 1	

Iron is more reactive than hydrogen hence it reacts with sulphuric(VI) acid to produce hydrogen gas and iron(III) sulphate which is green.

Beaker II:

Copper is below hydrogen hence no reaction will take place. ✓ 1

(b) (i) To dry hydrogen gas. ✓ 1

(1 mark)

(ii) Calcium oxide /anhydrous calcium chloride /silica gel. ✓ 1

(1 mark)

(Accept the formulae) (Any one correct @ 1mk) (1 mark)

- (iii) To suck the products of the burning into the boiling tube. ✓ 1
- (iv) Water ✓ 1

(1 mark) (1 mark)

(v) Boil the liquid. If it boils at 100°C/ constant, then this confirms that it is water. ✓ 1

(1 mark)

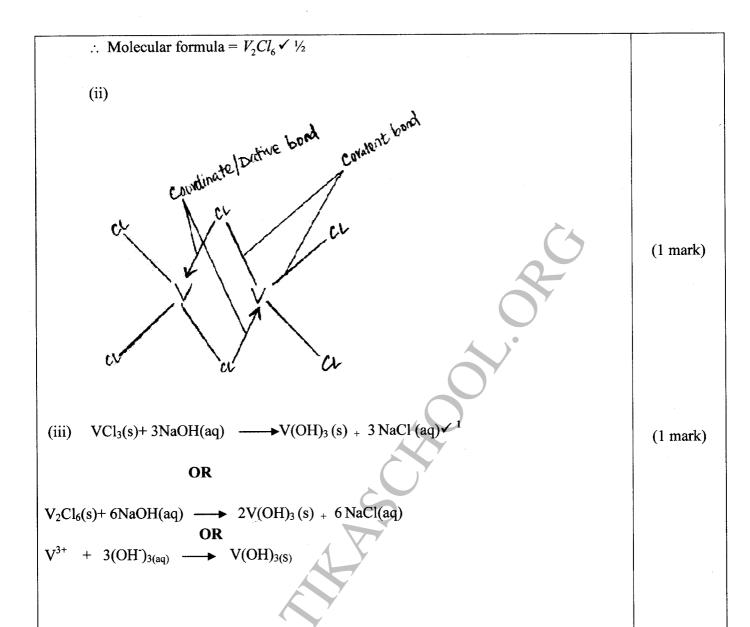
OR

Freeze the liquid. If it freezes at 0°C, then this confirms that it is water√/ Determine density of liquid, if it is 1g/cm³ then it is water.

(Accept any one correct @ 1mk)

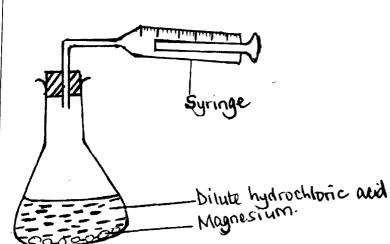
(vi) Dry -The substance is free from moisture. ✓ 1

(2 marks)


Anhydrous - The substance has lost its water of crystallization through heating,

to form anhydrous substances. ✓ 1

4 (a)	W/ · · · · · / ·	
(i)	W is acidic. ✓1	(1 mark)
(ii)	Sulphuric(VI) acid, H_2SO_4 . $\checkmark 1$	
(iii)	(II) - Magnesium sulphate. ✓1	(1 mark)
(111)		(1 mark)
	(III) - Sodium sulphate. ✓1	(1mark)
(iv)	$Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_{4(s)} \checkmark 1$	(1 mark)
		(1 mark)
(b) (i)		
(I)		
	V Cl	
Mass	(g) 19.75 80.25	
RAM	27 35.5	
IC IIVI	33.3	
Moles	$\frac{19.75}{27}$ $\frac{80.25}{35.5}$ $\sqrt{\frac{1}{2}}$	
	27 35.5 72	
÷ sma	Her $\frac{0.73}{0.73}$ $\frac{2.26}{0.73}$ $\sqrt{\frac{1}{2}}$	(2 marks)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Empir	ical - VCl ₃ , ½	
1		
(II	Molar mass = 267	
	Empirical mass $VCl_3 = 27 + 35.5 \times 3$	
	= 27+ 106.5	
	= 133.5 √ ½	
(Er	npirical mass) n = molecular mass	
(2)	133.3n = 267	
	$n = 267 \div 133.5$	
	$n = 2 \checkmark 1$	


(2 marks)

 $(VCl_3)_2 = V_2Cl_6$

(i)

(3 marks)

Workability - 1mark
Measurement of the gas- 1 mark
Labeling of reactants and gas - 1mark

(ii)
$$Mg_{(s)} + 2HCl_{(aq)} \rightarrow MgCl_{2(aq)} + H_{2(g)} \checkmark 1$$

(iii)
$$Mg_{(s)} + 2HCl_{(aq)} \rightarrow MgCl_{2(aq)} + H_{2(g)}$$

Moles of Mg = $\frac{0.048}{24} = 0.002$

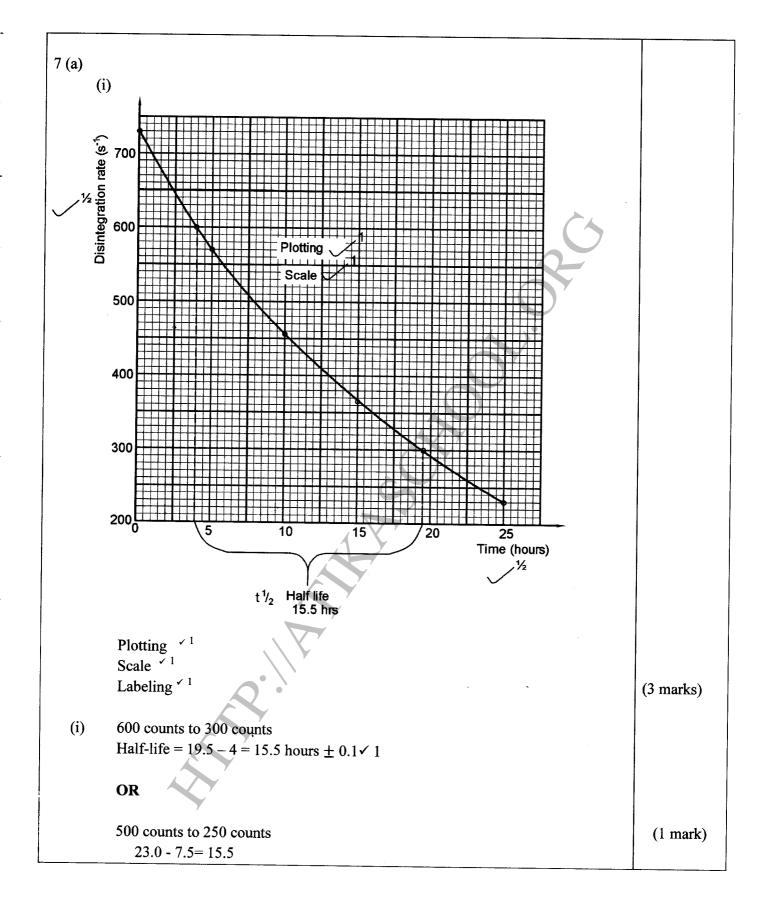
(1 mark)

Moles of Mg = Moles of H₂ = $0.002\checkmark$ ^{1/2} Volume of hydrogen gas = 0.002×0.048 litres \checkmark ^{1/2}

$$= 0.048 \text{dm}^3 \checkmark \frac{1}{2}$$

(2 marks)

(iv) Moles of HCl =
$$2 \times 0.002 \checkmark \frac{1}{2} = 0.004. \checkmark \frac{1}{2}$$


$$\frac{\text{volume} \times 0.1}{1000} = 0.004 \checkmark \frac{1}{2}$$

Volume =
$$\frac{0.004 \times 1000}{0.1} \checkmark \frac{1}{2}$$

$$= 4/0.1 = 40 \text{cm}^3 \checkmark 1$$

(3 marks)

6. (a) Sulphur(IV) oxide ✓ 1	(1 mark)
(b) Oxygen ✓ ¹and nitrogen(IV) oxide. ✓ ¹	(2 marks)
(c) Lead(II) oxide/ PbO. ✓ 1	(1 mark)
(d) Lead. ✓ ¹	(1 mark)
(e) (i) Grey beads formed at cathode; ✓ ¹	
Bubbles/ effervescence.of a colourless gas at the anode ✓ 1	(2 marks)
(ii) $2O^{2-}(1) \longrightarrow 2O_2(g) + 4e^{-\sqrt{1}}$	(1 mark)
(f) $Pb_{(aq)}^{2+} + 2I^{-}(aq) \to PbI_{2}(s)$. \checkmark 1	(1 mark)
(g) A white precipitate ✓ ½ was formed which dissolves in excess to form a	(1 mark)
colourless solution. ✓ ½	
(h) (i) Displacement / Redox reaction ✓ 1	(1 mark)
(ii) $Pb^{2+}(aq) + Zn(s) \to Pb(s) + Zn^{2+}(aq)$. \checkmark	(1 mark)
y	

(ii) It would have no effect on the curve as the quantity of bismuth does not affect	
half-life. ✓ 1	(1 mark)
(b) (i) Applications in medicine	
Sterilizing surgical instruments.	
Destroying cancerous tissues during ✓ 1	
radiotherapy.	
Provide power to the heart pace setters.	(1 mark)
(Any one correct @ 1mk)	(1 mart)
(ii) Applications in agriculture	
Monitor photosynthesis and other related processes.	
• Preservation of foodstuffs, by exposing ✓1	
Micro-organisms to gamma rays.	
Rate of absorption of a fertilizer by the plant.	(1 mark)
(Any one correct @ 1mk)	(1 mark)
(iii)Applications in Tracers	
 Detecting leakages in underground water or oil pipes. ✓ 1 	(1 mark)
(iv)Applications in Nuclear power stations.	
• To generate electricity. 1	(1 mark)
(d) Dangers of radioactivity	
 Long term exposure causes genetic mutation; ✓ 1 	
 Radioisotopes can be used as weapon of mass ✓ 1 	
Destruction;	
• Causes skin cancer;	(2 marks)
When tested causes environmental pollution.	(=)
(Any 2 correct @ 1mk)	