4.6.2 Physics Paper 2 (232/2)

SECTION A (25 marks)

١.	Cooking/warming/heating	(2 marks)
•	Communication / Radar/ measure distances	
	Magnetic – Nickel, cobalt	(2 marks)
•	Non-magnetic – Tin, copper	
	Measuring distances/ speed of sound.	(1 mark)
3. 	Polarization is the formation of hydrogen gas at the positive terminal of	(1 mark)
1.		
 5.	the cell. - Have a wide/wider field of view.	(2 marks)
	 Form upright images. 	
<u>. </u>	A – South pole	(1 mark)
7.	The light passes through the walls and gets absorbed by the soil, emitting	(2 marks)
, ·	energy of longer wavelengths which cannot penetrate the walls hence get	
	trapped within the green house causing heating.	(1 mark)
9.	-Rays must have direction -Virtual rays dotted	(3 marks)

10.	${}_{z}^{A}X = {}_{z+1}^{A}Y + {}_{-1}^{o}\beta$	(1 mark)
11.	- The leaf falls	(3 marks)
	Charge is induced on the sphere causing repulsion of electrons to the	
	leaf hence leaf falls.	
12.	T = 20 s	(2 marks)
	$f = \frac{1}{T} = \frac{1}{20}$	
	= 0.05 Hz	
13.	$V_T = V_1 + V_2 + V_3$	(3 marks)
	from ohm's law $V = IR$ therefore	
	$I_T R_T = I_1 R_1 + I_2 R_2 + I_3 R_3$	
	but $I_1 = I_2 = I_3 = I_T$ since they are in series	
	$\frac{IR_T}{I} = \frac{I}{I}(R_1 + R_3 + R_3)$	
	$\mathbf{R}_T = \mathbf{R}_1 + \mathbf{R}_2 + \mathbf{R}_3$	
14.	Conversion of the Kinetic energy of the electrons into heat energy/	(1 mark)
	Conversion of electrical energy to heat	

SECTION B (55 Marks)

15.	a)	(3 marks)
	Air	
	Glass	
	(3 marks)	
	C oritinal angle	
	C-critical angle	
	C – critical angle	
	b) (i) $n = \frac{1}{\sin c}$	(3 marks)
	sin c	
	g: 1 1	
	Sin c = $\frac{1}{n} = \frac{1}{1.62}$	
	$C = 38.1^{\circ}$	
	(ii)	(2 marks)
	Emergent Ray	
,		
	Incident Ray 2 marks	
	В	
	c) - Dispersion of white light	(2 marks)
	- In periscopes	
	- In Binoculars	
	- In telescopes	
	(Any 2)	

a)	(2 marks)
i. Radiations cause photo electrons to be ejected from the metal	
current flows.	
ii. Use a radiation of higher intensity	(2 marks)
Source is made moved closer/ increase anode voltage/accelerating	
voltage.	
iii. The frequency of the incident radiation is below the threshold	(2 marks)
frequency of the surface hence no emission can take place.	
b) (i)	(3 marks)
$W_{\circ} = hf_{\circ}$	į
$=6.63\times10^{-34}\times5.5\times10^{14}$	
$=3.647\times10^{-19}$	
ii.	(4 marks)
$hf = hf_{\circ} + K.E$	
$K.E = \frac{nc}{\lambda} - W \qquad .$	
$6.63 \times 10^{-34} \times 3.0 \times 10^{8}$	
$= \frac{-3.647 \times 10^{-19}}{4.5 \times 10^{-7}}$	
$=4.42\times10^{-19}-3.647\times10^{-19}$	
a)	(3 marks)
i. A momentary deflection is observed, Conductor cuts the field.	
An emf is induced in AB Causing current in the circuit	
ii. A bigger deflection is observed/ higher current	(1 mark)
· ·	
	 i. Radiations cause photo electrons to be ejected from the metal surface (cathode), the electrons are attracted by the anode hence current flows. ii. Use a radiation of higher intensity Source is made moved closer/ increase anode voltage/accelerating voltage. iii. The frequency of the incident radiation is below the threshold frequency of the surface hence no emission can take place. b) (i) W_o = hf_o = 6.63×10⁻³⁴×5.5×10¹⁴ = 3.647×10⁻¹⁹ ii. hf = hf_o + K.E K.E = hc/A - W = 6.63×10⁻³⁴ × 3.0×10⁸/4.5×10⁻¹⁹ = 4.42×10⁻¹⁹ - 3.647×10⁻¹⁹/9 = 7.73×10⁻²⁰ J a) i. A momentary deflection is observed, Conductor cuts the field. An emf is induced in AB Causing current in the circuit

	1.) (')	T (2 1)
	b) (i)	(3 marks)
	$V_p \ N_p$	
	$\frac{V_p}{V_s} = \frac{N_p}{N_s}$	
	$N_s = \frac{600}{240} \times 12$	
	=30turns	
	(ii)	(3 marks)
		(5 11101115)
	$\frac{N_p}{N_s} = \frac{I_s}{I_p}$	
	$N_s - I_p$	
	30×0.5	
	$I_p = \frac{30 \times 0.5}{600}$	
	=0.025A	
10 ()		
18. (a)	 Area of overlap of the plates 	(2 marks)
	 Distance between the plates. 	
	 Type of dielectric. 	
	(Any 2)	
(b)	i.	(4 marks)
	1=1 1	
	$\frac{1=1}{C_T} \frac{1}{C_1} + \frac{1}{C_2}$	
	1 1 2+1 3	
	$=\frac{1}{4}+\frac{1}{8}=\frac{2+1}{8}=\frac{3}{8}$	
	$= \frac{1}{4} + \frac{1}{8} = \frac{2+1}{8} = \frac{3}{8}$ $C_{T1} = \frac{8}{3} = 2.67 \mu\text{F}$	
	$C=6 \neq 2.67 = 8.67 \ \mu F$	
	ii. Qin series section	(3 marks)
	Q = CV	,
	$=2.67\times4.0$	
	=10.68C	
	$Q(4\mu F) = 10.68$	

19.	a) (i) B ₁ – y deflecting plates	(2 marks)
	$B_2 - x$ deflecting plates	
	(ii)	(3 marks)
	Grid; controls the intensity by controlling the number of electrons	
	reaching the screen.	
	If made more negative less electrons pass through.	
	b)	(4 marks)
	T= 8 X 20 ms ⁻¹	7
	= 160	
	= 0.16 s	
	$F = \frac{I}{I}$	
	$F = \frac{I}{T}$	
	$=\frac{1}{0.16}=6.25Hz$	
	,c) Tungsten has a high melting point.	(2 marks)
	It can with stand high temperatures.	
		•