GATITU SECONDARY SCHOOL, P.O. BOX 327 – 01030, GATUNDU.

FORM 3 PHYSICS MID TERM EXAMINATION. TERM 2 2015.

- 1. A bus travelling at 30m/s is brought to rest within a distance of 90m.
- a) Find its acceleration.

(3mks

b) How long does it take to stop.

(2mks

- 2. An arrow shot vertically upwards rises to a maximum height of 1000m. Determine
- a) the initial velocity of the arrow.

(3mks

b) time of the flight for the arrow.

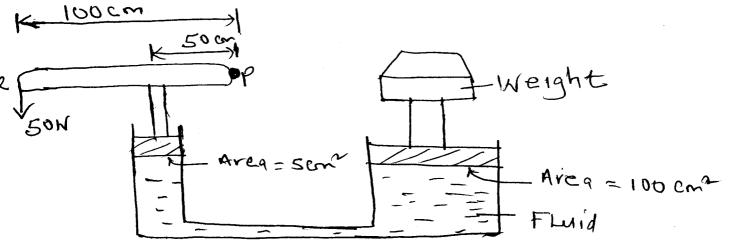
(2mks

3. of light	Given that the refractive index of glass is 1.5, Calculate travelling from air to glass if the angle of refraction is		incidence for a ray 3mks
			-
			•
4(i)	Define total internal reflection.	(2mks	
ii)	State conditions necessary for total internal reflection	on to occur.	(2mks
5.	Calculate the critical angle of a medium whose refra	ctive index is 2	.4 (3mks
6.	State Newton's second law of motion.	(1mk	

A trolley whose mass is 200kg travelling at 4.5 m/s is brought to rest in a seconds. 7. Calculate the retardation of the car and the force applied by the brakes. (4mks A car of Mass 2000kg is brought to rest from a velocity of 25m/s by a constant of 3000N. Determine the change in momentum produced by the force and the time it takes for the car to (4mks come to rest. A bullet of mass 10g is shot into an orange of mass 200g resting on a horizontal surface. At the time of the impact, the bullet is travelling at 20m/s. Calculate the common velocity (3mks just after the impact. Distinguish between elastic and in-elastic collision. 10. (2mks

	ley whose mass is 200kg travell retardation of the car and the	•	
	of Mass 2000kg is brought to re te change in momentum produc		
	et of mass 10g is shot into an o of the impact, the bullet is trave impact.		n a horizontal surface. e common velocity
10. Distin	guish between elastic and in-el	lastic collision.	(2mks

11. these	During in- elastic collision, Kinetic energe forms of energy.	y changes into other form (3mks	s of energy. State
12.	Explain why a paratrooper flexes his leg	s when he lands.	(2mks
13.	State the forces acting on a ball steel ba	all when falling through oil	. (3mks
14. height	Calculate the work done by a stone Ma t of 2.0m. (4	son in lifting a stone of Ma mks	nss 15kg through a


15. by 10	A force of 10N stretches a sp	ring by 5cm. Calculate the w (4mks	ork done in stretching a spring
16. come: a)	A car travelling at a speed of is to rest in 8 seconds. If the modern braking force	20m/s is uniformly slowed d nass of the Car is 1500kg, Cal (4mks	own by applying brakes and culate
b)	Work done in bringing the Ca	r to rest.	(4mks
17.	Define power and state its S.I	Units.	(2mks

18. Calculate the power developed by a girl climbing through a flights to stairs to a height of 15 metres in 30 seconds given that her weights in 500N. (4mks

19. In a machine the load moves through a distance of 2m and the effort moves 8 m. If the effort is 20N and the load is 60N. Calculate the efficiency of the machine. (4mks

20. In a gear system, a wheel 'A' has 10 teeth while wheel 'B' has 20 teeth. If wheel A is driving wheel B, calculate the velocity ratio. (3mks

21. The figure below shows hydraulic press system using a lever of negligible mass, on the side of the small piston, pivoted of a points P. a force of 50% is applied of R as shown.

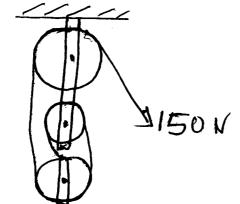
Calculate:-

a) the force exerted by the small piston on the liquid.

(3mks

b) the pressure of the liquid below the small piston.

(4mks


c) the weight balanced by the large piston.

(4mks

d) Efficiency of the system.

(4mks

22. The figure below shows a pulley system.

]400N

a) Calculate the efficiency of the system.

(4mks

- 23. Define the following terms
- i) Potential difference

(4mks

- ii) Electrii current
- iii) A volt

24. State Ohm's Law (1mk

25(i) State two defects of a simple cell. (2mks

9

How can these defects be minimized.

ii)

(3mks.