

5.4 PHYSICS (232)

5.4.1 Physics Paper 1 (232/1)

- 1. 5.32 cm (1 mark)
- 2. magnitude of the force
 The perpendicular distance between the force and the pivot. (1 mark)
- 3. Patmosphere = Pmercury + pair enclosed;

(3 marks)

- 4. (a) F = Ke; 20 = 0.5 K; $K = 40 \text{ Ncm}^{-1}$ (2 marks)
 - (b) $F = 40 \times 0.86 =$ = 34.4 N;

(1 mark)

- 5. Weight of object in air
 - Weight of object when fully immersed in fluids

(2 marks)

6. Upthrust = weight in air - weight of object in fluid.

(1 mark)

- 7. Wood is a poor conductor of heat; hence heat is used to burn paper, while most heat is conducted away by copper; hence paper takes long to burn. (2 marks)
- 8. Clockwise moments = anticlockwise moments;

$$0.18x = 1(50 - x) + 0.12(100 - x)$$

$$0.18x = 50 - x + 12 - 12x$$

$$0.18x = 62 - 1.12x$$

$$7.30x = 62$$

$$x = 47.69 \text{ cm};$$

(3 marks)

9. Air is compressible; so the transmitted pressure is reduced;

(2 marks)

10. The high velocity of the gas causes a low pressure region;

Atmospheric pressure is higher;

Pressure difference draws air into the region;

(3 marks)

11. Water molecules have a high adhesion forces; With glass molecules and hence rise up the tube while mercury molecules have greater cohesion;

Forces within than adhesion with glass hence do not rise up.

(2 marks)

12. Allow for expansion;
Water expands on cooling between 4° C and 0° C; (1 marks)

13. Diffusion of the ink molecules; (1 mark)

SECTION B

14. (a) - increasing the angular velocity;
- Reducing the radius of the path; (2 marks)

(b) (i) Tension in the string; (1 mark)

(ii) Arrow to centre of circle; (1 mark)

(iii) Direction of motion of object changes and causes the velocity to change with time; (1 mark)

(iv)
$$F = \frac{MV^2}{r};$$

$$= \frac{0.5 \times 8^2}{2}$$

$$= 16N;$$
(3 marks)

- (c) (i) $V^2 = u^2 + 2as;$ $0 = u^2 - 2 \times 10 \times 100$ $u = \sqrt{2000}$ 44.72 ms⁻¹; (2 marks)
 - (ii) V = u + at; $0 = 44.72 - 10 \times t$ t = 4.472Total time = 2×4.472 = 8.94s; (2 marks)
- 15. (a) Quantity of heat required to convert 1 kg of ice at 0° C to water without change in temperature; (1 mark)
 - (b) (i) E = Pt;= $60 \times 5 \times 60;$ = 18000 J; (3 marks)
 - (ii) Mass of water = 190 130 = 60g; $ml_f = Pt$.

$$\frac{60}{1000}l_f = 60 \times 60 \times 5;$$

$$l_f = 3 \times 105 \text{ J/Kg};$$
(4 marks)

- (iii) Heat from the surrounding melts the ice; (1 mark)
- 16. (a) F = Ma; $F = 2 \times 5$ = 10N;friction force = 12 - 10 = 2N; (3 marks)
 - (b) (i) OA the ball bearing decelerates; as the upthrust increases to a maximum; (2 marks)

AB - ball attains terminal velocity; when upthrust = weight; (2 marks)

- (c) (i) VR = 2 (1 mark)
 - (ii) To change direction of effort; (1 mark)
 - (iii) Efficiency = $\frac{MA}{VR} \times 100$; $80 = \frac{MA}{2} \times 100\%$ MA = 1.6; $\therefore 1.6 = \frac{L}{500}$ $L = 500 \times 1.6$ = 800 N; (3 marks)
- 17. (a) (i) F = mg $= 10 \times 10$ = 100 N ; Additional pressure $= \frac{100N}{100 \text{ cm}^2} = 1 \text{ Ncm}^{-2}$; new reading = 10 + 1 = 11 N; (4 marks)
 - (ii) Pressure has increased; because, when the volume reduces, the collisions between the gas molecules and walls of the container increases; (2 marks)
 - (b) (i) Pressure = 11 Ncm^{-2} (1 mark)
 - (ii) $\frac{P_1}{T_1} = \frac{P_2}{T_2};$ $\frac{1}{300} = \frac{11}{T_2};$ $T_2 = \frac{300 \times 11}{10} = 330k;$ $T_2 = 57^{\circ} C$ (4 marks)

- 18. (a) (i) (I) Reading decreases on spring balance;
 - (II) Reading on weighing balance increases.
 - (ii) As the block is lowered, upthust increases; and hence it apparently weighs less;

(4 marks)

(b) (i) Upthrust - weight in air - weight in water

$$=$$
 2.7 - 2.46

= 0.24 N;

Reading in weighing balance = 2.8 + 0.24= 3.04 N;

(2 marks)

(ii) Relative density = weight in air; upthrust

$$=\frac{2.7}{0.24}$$

= 11.25;

Density = $R.d \times density of water$

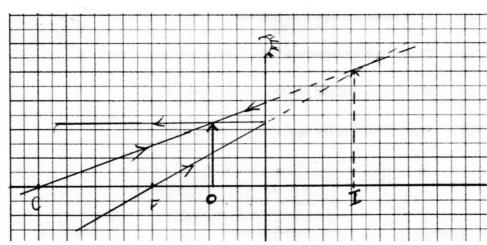
$$= 11.25 \times 1000$$

$$=$$
 11250 kgm⁻³;

(3 marks)

(c) The hydrometer sinks more;

The density of the water is reduced;


(2 marks)

5.4.2 Physics Paper 2 (232/2)

SECTION A

- 1. angle of incidence = angle of reflection = 0 (1 mark)
- larger hole acts as many small holes (1 mark)∴ many overlapping images of same object (1 mark)
- 3. Within the magnet, N and S poles of the dipoles cancel out but at the end of the poles they don't. (1 mark)
- 4. (a) 2V (1 mark)
 - (b) 1.6V (1 mark)

5.

Object at the intersection of incident ray; (1 mark) Incident rays; (2 marks)

- 6. Ray totally reflected by face AC (1 mark) i = 60 hence r = 60 (1 mark)
- 7. a = 1 and b = 0 (1 mark) x = neutron (1 mark)
- 8. $\frac{Ns}{Np} = \frac{Vs}{Vp} \quad (1 \text{ mark})$ $\frac{5}{10} = \frac{Vs}{12} \quad (1 \text{ mark})$ $Vs = 6V \quad (1 \text{ mark})$
- 9. Each lamp on full voltage (1 mark)
 Failure of one lamp does not affect the others (1 mark)

10.			e air molecules between plates o plates of opposite sign	(1 mark) (1 mark)
11.			otter produces short wavelength infrared waves which penetrate glass; od produces long wavelength infrared waves which do not penetrate glass.	(1 mark)
12.	K = I	3 - T		(1 mark)
13.			res 4 of its 5 electrons with germanium. ctron is free for conduction.	(1 mark) (1 mark)
			SECTION B	
14.	(a) <i>f</i>	$f_A = 10a$	cm	(1 mark)
	(b)	(i)	to produce a magnified real image	(1 mark)
		(ii)	to produce a magnified virtual image of the 1st image.	(1 mark)
	(c)	(i)	move A so that the object is slightly outside f_A	(1 mark)
		(ii)	move B so that the real image is within f_B .	(1 mark)
	(d)	(i)	$m = \frac{24}{16}$	
			$=\frac{3}{2}$	(2 marks)
			28	
		(ii)	$m=\frac{28}{4}$	
			= 7	(2 marks)
15.	(a)	-	Negative charges flow from earth to cap.	(1 mark)
		-	Negative charge neutralizes the positive.	(1 mark)
	(b)	(i)	$\frac{1}{c} = \frac{1}{c_1} + \frac{1}{c_2}$ (1 mark)	
			$=\frac{1}{3}+\frac{1}{6}$ (1 mark)	
			$=\frac{1}{2}$	
			$C = 2\mu F \qquad (1 \text{ mark})$	

(ii)
$$Q = cV$$
 (1 mark)
= 2 x 4

=
$$8\mu C$$
 (1 mark)

(iii)
$$Q = 8\mu C$$
 (1 mark)

(c)

- radical field;Correct dirrection;

(2 marks)

16. (a) (i) Energy =
$$QV$$
 (1 mark)

(ii) Power =
$$\frac{E}{t} = \frac{Qv}{t}$$
 (1 mark)

(iii)
$$I = \frac{Q}{t}$$
 (rate of flow of charge) (1 mark)

$$\therefore P = \frac{Q}{t}.V$$

$$P = I.V$$
 (1 mark)

(b) Power =
$$VI = 20 \times 60 (1 \text{ mark})$$

$$240 \text{ x I} = 1200 \text{ W} \quad (1 \text{ mark})$$

$$I = \frac{1200}{240}$$
$$= 5A \quad (1 \text{ mark})$$

4A < 5A hence fuse will blow. (1 mark)

- 17. (a) (i) Thermionically by cathode (1 mark)
 - (ii) causing fluorescence on screen (1 mark)
 - (iii) (i) control brightness of fluorescence (1 mark)
 - (ii) to focus the electron beam (1 mark)

(b) 1 wavelength = 2 cm (1 mark)

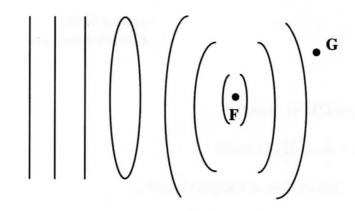
$$period = 2 \times 2 \times 10^{-3} s$$
 (1 mark)

$$= 4 \times 10^{-3} s$$

(1 mark)

$$f = \frac{1}{T}$$

(1 mark)


$$=\frac{1}{4\times10^{-3}}$$

(1 mark)

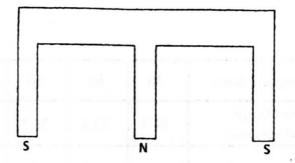
$$= 250 HZ$$

(1 mark)

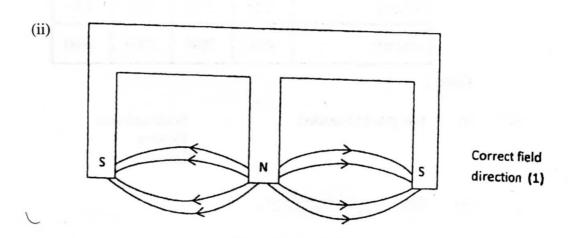
18. (a)

- curved waves converging before focus (1 mark)
- diverging after focus.

(1 mark)


- (b) (i) O cm trough and crest interference (2 marks)
 - (ii) +10 crest and crest interference (2 marks)
- (c) (i) Waves produced are reflected at the fixed ends. (1 mark)
 Incident and reflected waves interfer constructively at antinodes. (1 mark)
 and destructively at nodes. (1 mark)

(ii)
$$\lambda = \frac{2}{3} \times 1.5$$


= 1m

(1 mark)

19. (a) (i)

All must be correct (1)

- (b) coil moves to and fro (1 mark)force on coil varies direction as current varies in direction. (1 mark)
- (c) (i) dilute sulphuric acid (1 mark)
 (ii) (I) Zinc ions go into acid leaving electrons on the plate (1 mark)

 (II) Give up electrons to discharge hydrogen Ions. (1 mark)
 - (iii) Electrons flow from zinc plate to the copper plate. (1 mark)

5.4.3 Physics Paper 3 (232/3)

1.

PART A

(c)

Distance d (cm)	70	60	50	40				
Time t for 20 oscillations(s)	24.3	25.8	26.7	27.5				
Period T = $\frac{t}{20}$ (s)	1.22	1.29	1.34	1.38				
T ⁴ (S ⁴)	2.22	2.77	3.22	3.57				
d ² (cm ²)	4900	3600	2500	1600				

(3 marks)

(1 mark)

(1 mark)

(1 mark)

Table 1

(6 marks)

See graph (5 marks) (d) (i)

Scale and axis **Plotting**

(1 marks)

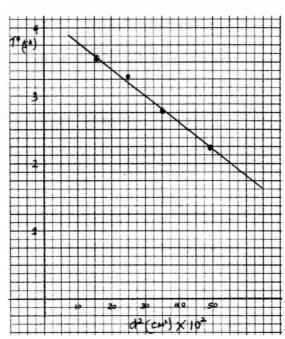
(2 marks)

Line

(1 mark)

(ii) Slope =
$$\frac{2.50 - 3.50}{(42 - 18) \times 10^2}$$
;

 $= -4.2 \times 10^{-4} \,\mathrm{S}^4\mathrm{cm}^{-2};$


(3 marks)

(iii) K =
$$\sqrt{\frac{4\pi^4}{4.2 \times 10^{-4}}}$$
;

 $= 963 \text{ S}^4\text{cm}^{-2};$

(3 marks)

d (i)

1. PART B

(e) l = 0.1 mb = 0.01 m (1 mark)

(f) m = 0.06 kg (1 mark)

(g)
$$p = \frac{0.06}{3}(0.1^2 + 0.01^2)$$

= 2.02×10^{-4} (2 marks)

(i) (I) t = 75s (1 mark)

(II) T = 7.5s (1 mark)

(III)
$$7.5 = 2\pi \sqrt{\frac{2.02 \times 10^{-4}}{G}}$$

 $G = 1.42 \times 10^{-4}$

unit not required.

(2 marks)

2. PART A

(b) Vo = 3.0V (1 mark)

(d)

Voltage(V)	2.5	2.25	2.0	1.75	1.5	1.25
Time(s)	1.7	2.6	3.9	4.8	6.5	7.9

(e) (i) see graph (5 marks)

(ii) $t_{\frac{1}{2}} = 6.4 \text{ S}$ (1 mark)

(f) $R = \frac{6.4 \times 10^6}{0.693 \times 2200}$

 $= 4200 \ \Omega \tag{1 mark}$

PART B

(h) (i) $L_1 = 47.4 \text{ cm}$ (1 mark)

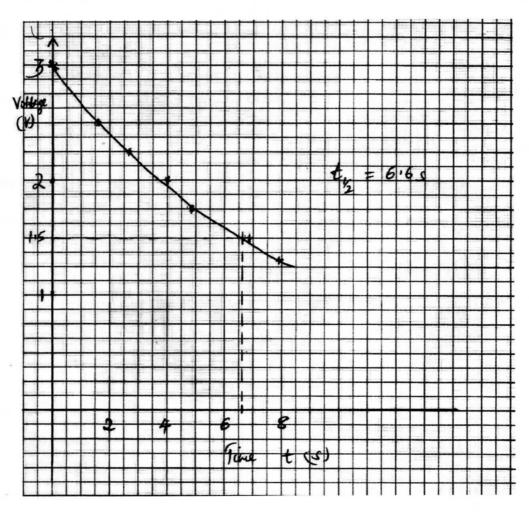
(ii)
$$W_1 = \frac{0.474 \times 0.05 \times 10}{0.35}$$
$$= 0.68 \text{ N}$$
 (1 mark)

(i) (I)
$$L_2 = 28 \text{ cm}$$
 (1 mark)

(II)
$$W_2 = \frac{0.28 \times 0.05 \times 10}{0.35}$$
$$= 0.4 \text{ N}$$
 (1 mark)

(j)
$$T1 = 26^{\circ}C$$

Accept (18 - 32°C) (1 mark)


(k) (i)
$$L_3 = 28.5 \text{ cm}$$
 (1 mark)

(ii)
$$T_2 = 83^{\circ}\text{C}$$

Accept (60 - 95°C) (1 mark)

(iii)
$$W_3 = \frac{0.285 \times 0.05 \times 10}{0.35}$$
$$= 0.41$$
 (1 mark)

(1)
$$K = \frac{(0.68 - 0.4) - (0.68 - 0.41)}{(0.68 - 0.41)(83 - 26)}$$
$$= \frac{0.28 - 0.27}{0.27 \times 57}$$
$$= 6.5 \times 10^{-4} \text{K}^{-1}$$
(2 marks)

