KANDARA SUB-COUNTY SECONDARY SCHOOLS FORM 3 2016 JOINT EXAMINATION

Kenya Certificate of Secondary Education (KCSE)

Chemistry (233/1)

Paper 1 (Theory) October 2016

- a) i) Phosphorous (III) Oxide √1
 ii) Phosphorous (IV) oxide √1
 b) Acidic √1
- 2. a) P1V1 = P2V2 T1 T2 $2 \times 10^7 = 10^5 \times V2 \checkmark 1$ 90 298 $V2 = 2 \times 10^7 \times 298 \checkmark 1/2 = 662.22 dm^3 \checkmark 1/2$ $10^5 \times 90$

NB:

- i) Drying agent 1/2
- ii) Method of collecting gas 1/2
- iii) Workable diagram 1/2

2mks

5. Heat the mixture √½, aluminium chloride will sublime.

Add water $\checkmark \frac{1}{2}$ to dissolve potassium chloride $\checkmark \frac{1}{2}$, copper (II) oxide does not.

Filter the mixture to obtain copper (II) oxide $\checkmark \frac{1}{2}$

Evaporate the filter ✓½ to obtain potassium chloride

- **6.** a) Temperature and pressure are directly proportional ✓ 1
 - b) When temperature increases $\sqrt{\frac{1}{2}}$ the gas particles gain more kinetic energy $\sqrt{\frac{1}{2}}$. They move faster and collide $\sqrt{\frac{1}{2}}$ with the walls of the container more frequently hence increasing $\sqrt{\frac{1}{2}}$ pressure.
- 7. a) CaO is basic √½ whereas HCl gas is acidic √½, hence they will react together √1
 b) Conc. H₂SO₄√1
- 8. a) B√½, Has a stable electron √½ configuration/Has an octet in the outermost energy level.
 - b) A and C ✓1
 - c) $A_{2(g)} + 2C_{(s)} \rightarrow 2CA_{(s)} \checkmark 1$

9.	C	H	0
	37.5	12.5	50
	37.5 12	12.5 1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	3.125	12.5	3.125
	1	4	1 11/2

E.F =
$$CH_4O\checkmark\frac{1}{2}$$

 $(CH_4O)_n = 32$
 $(12 + 4 + 16)n = 32\checkmark\frac{1}{2}$
 $32n = 32$
 $n = 1\checkmark\frac{1}{2}$
M.F = $CH_4O\checkmark\frac{1}{2}$

10. SO₂ dissolves in water to form ✓2 H₂SO₃, which is oxidised by Cl₂ to form H₂SO₄. H₂SO₄ formed react with BaCl₂✓1 to form a white ppt of BaSO₄.

Accept equations.

$$\begin{split} &SO_{2(g)} + H_2O_{(1)} \to H_2SO_3 \checkmark 1 \\ &H_2SO_{3(aq)} + (O) \to H_2SO_{4(aq)} // \\ &H_2SO_{3(aq)} + Cl_{2(g)} \to H_2SO_{4(aq)} \checkmark 1 \end{split}$$

$$H_2SO_{4(aq)} + BaCl_{2(aq)} \rightarrow BaSO_{4(s)} + 2HCl_{(aq)} \checkmark 1$$

11. a) The reddish brown solid turns into a grey solid

b)
$$Ca(OH)_2 + CO_{2(g)} \rightarrow CaCO_{3(s)} + H_2O \checkmark 1$$

 $CaCO_{3(s)} + H_2O_{(l)} + CO_{2(g)} \rightarrow Ca(HCO_3)_{2(aq)} \checkmark 1$

c) It is poisonous/toxic/pollutant ✓1

- 12. i) The yellow/brown solution turns pale green
 - ii) A yellow solid is deposited ✓1
- 13. a) Liquid changes anhydrous CuSO₄ from white to blueORLiquid changes anhydrous CoCl₂ from blue to
 - Liquid changes anhydrous CoCl₂ from blue to pink.
 - b) Colour changes from red to grey beads $\checkmark 1$ c) $PbO_{(s)} + H_{2(g)} \rightarrow Pb_{(s)} + H_2O_{(l)} \checkmark 1$
- 14. a) Atoms of the same element with same atomic number but different mass number 1 b) $63.5 = ({}^{x}/{}_{100} \times 63) + ({}^{100 x}/{}_{100}) \times 65 \checkmark {}^{1}/_{2}$ = 63x + 6500 65x

$$-\frac{63x}{100} + \frac{6500 - 65x}{100}$$
$$-\frac{2x + 6500}{100} = 63.5 \checkmark \frac{1}{2}$$

-2x = -150

 $x = 75\% \checkmark \frac{1}{2}$ and the other isotope 25% $\checkmark \frac{1}{2}$

- 15. a) P I $\checkmark \frac{1}{2}$ Q - II $\checkmark \frac{1}{2}$ R - III $\checkmark \frac{1}{2}$ S - V $\checkmark \frac{1}{2}$
 - b) R₂O₃✓1
- 16. Its inert/unreactive ✓ 1

- 17. a) 200cm^3 of solution = 2g NaOH $100 \text{cm}^3 = x$ $x = \frac{2 \times 1000}{200} \text{ Molarity of NaOH} = \frac{10}{40} \text{ Mola$
 - b) $\text{HNO}_{3(aq)} + \text{NaOH}_{(aq)} \rightarrow \text{NaNO}_{3(aq)} + \text{H}_2\text{O}_{(1)}$ $\text{Moles of NaOH} = \underbrace{0.25 \times 25}_{1000} = 0.00625\checkmark\frac{1}{2}$ 1000 $\text{Mole ratio of HNO}_3: \text{NaOH is } 1:1\checkmark\frac{1}{2}$ $\text{hence moles of HNO}_3 = \underbrace{0.00625}_{0.00625} \times 1000\checkmark\frac{1}{2}$ 28 $= 0.223 \text{m}\checkmark\frac{1}{2}$
- 18. a) Solubility in solvent √1b) Stickiness or adsorbility √1
- 19. a) Different forms of an element in the sam physical state ✓1
 - b) i) Graphite ✓1
 - ii) One carbon atom is bonded to three other carbon atoms, leaving one electron free/mobile that conducts an electric current. ✓1
- 20. RO₂ = $\frac{x}{20}$ molecules/sec $\frac{x}{2}$ Ry = $\frac{x}{28.3}$ $\frac{1}{2}$ molecules /sec $\frac{RO_2}{Ry} = \sqrt{\frac{mmy}{mmo}}$ $\frac{\frac{x}{20}}{\frac{x}{28.3}} = \sqrt{\frac{mmy}{32}}$ mmy = $\frac{28.3^2 \times 32}{20^2}$ 1 = 64.07g $\frac{x}{2}$
- **21.** a) K and M✓1
 - b) $K\checkmark\frac{1}{2}$ and $M\checkmark\frac{1}{2}$ This is because K is acidic and M is basic and aluminium hydroxide being amphoteric would react with both 1
- 22. a) To liberate ammonia gas rapidly ✓1
 - b) Green yellow ✓1
 - c) $2NH_{3(g)} + 3O_{2(g)} \rightarrow 2N_{2(g)} + H_2O_{(l)} \checkmark 1$
- 23. i) Readily absorbs $CO_2 \checkmark 1$ ii) $\underline{b-c} \times 100\% \checkmark 1$

24. a) Heat √ 1

b) i)
$$2Br_{(aq)} \rightarrow BR_2 - 2e^{-\checkmark \frac{1}{2}}$$

ii) $Pb_{(aq)}^{2+} + 2e^{-} \rightarrow Pb_{(s)}^{\checkmark \frac{1}{2}}$

c) i) Anode

A reddish brown gas is formed 1/2

ii) Cathode

Grey beads of lead metal are deposited 1/2

- 25. a) i) A yellow powder of sulphur was deposited ✓1
 - ii) White solid of magnesium oxide was formed √1

b)
$$2Mg_{(s)} + SO_{2(g)} \rightarrow 2MgO_{(s)} + S_{(s)} \checkmark 1$$

- 26. i) Due to increase in the number of energy levels as number of electrons increase √1
 - ii) Halogen ion is formed by gaining an electron, this increases the electron repulsion in the outermost energy level hence the size increases 1
- 27. a) 3, 3-dimethylhexane \checkmark 1

ii) H H H H CI H - C - C - C - C - H H - H CH₃ H Br H

√1

- 28. a) Luminous ✓1
 - b) Middle part of flame is not hot√1 due to unburnt gas while the outer part is hot√1