FORM TWO CHEMISTRY AUGUST HOLIDAY ASSIGNMENT

	The information in the table below relat Study it and answer the questions that forments Atomic size (mm)	es to elements in the same group of the periodic table. ollows:-
G1	0.19	
G2	0.23	
G3	0.15	
2.	ch element has highest ionization energy The oxides of elements "A" and "B" hav etters do not represent actual symbols of	e the properties shows in the state of the s
A g	as at room temperature	Solid normal temperature
Dis	solves in water to form acidic solution one example of element "A" and "B"	Dissolves in water to form alkaline solution (2mks)
An o	xide of F has the formula F ₂ O ₅	
a)	Determine the oxidation state of "F"	44.45
b)	In which group of the periodic table i	s element "F" (1mk) (1mk)
4. Y ex 2003	ellow phosphorus reacts with chlorine g exposed to air. Explain these observation	as to form a yellow liquid. The liquid fumes when s. (2mks)
Expla	in why the reactivity of group (VII) elen	nents decreases down the group.
		(3mks)
	or compound CD III.	O" are 19 and 9 respectively. State and explain the
a)	Solid state	(1 ½ mark)
b)	Aqueous state	(1 ½ mark)
a)	Explain why the metals magnesium an	d aluminium are good conductors of electricity.
b)		(1mk) aluminium is used for making electric cables while (2mks)

5. The table below gives information on four elements represented by letters K, L, M and N. Study it and answer the questions that follow. The letters do not represent the actual symbols

Elements	Electron arrangement	Atomic radius (nm)	Ionic radius
K	2,8,2	0.136	0.065
L	2,8,7	0.099	0.181
M	2,8,8,1	0.099	0.181
N	2,8,8,2	0.174	0.099

- a) Which two elements have similar chemical properties? Explain (2mks) b) What is the most likely formula of the oxide of "L" (1mk)
- b) What is the most likely formula of the oxide of "L" (1mk)
 c) Which element is a non-metal? Explain (2mks)
- d) Which one of the elements is the strongest reducing agent? Explain (2mks)
- e) Explain why the ionic radius of "N" is less than that of "M" (2mks)
- f) Explain why the ionic radius of "L" is larger than its atomic radius. (2mks)
- Study the information given in the table below and answer the questions that follow. The letters do not represent the actual symbols of elements.
 Elements Atomic numbers Boiling point

Elemen	ts Atomic numbers	Boiling point
S	3	1603
Т	13	2743
Ū	16	718
v	18	87
w	19	1047
a)	Select the element which	h belong to the same
•	i) Group	
	ii) Period	
	· · · · · · · · · · · · · · · · · · ·	

- b) Which element
 i) is in gaseous state at room temperature? Explain (2mks)
- Take room temperature to be 298K
 ii) Does not form oxides (1mk)
- c) Write the:i) Formula of the nitrate of element T (1mk)
 - ii) Equation for the reaction between element "S" and "U" (1mk)
- d) What type of bond would exist in the compound formed when element "U" and "T" react? Give a reason for your answer (2mks)
- e) The aqueous sulphate of element "w" was electrolyzed using inert electrodes. Name the products formed at the

(1mk) (1mk)

i) Cathode (1mk)
ii) Anode (1mk)

7.	The table	below show	s some prop	perties	of ch	lorine	, bron	nine a	nd iod	line.		
Elements		Formulae	Formulae Colour and state at room temperature					•	Solubility in water			
		Cl_2		(i)						Soluble		
		Br ₂	Brown 1	iquid						(ii)		
Io	line	I_2	(iii)	• •••••						Slightly coluble		
a)	Comp	lete the table	below by	giving	the m	issin	g info	rmatio	on in (i) (ii)		
			• ,			•	,		((3mks)		
b)	Chlor oxide	ide is prepare	ed by reacti	ng cor	ncentr	ated h	ydroc	chlorie	c acid	with Manganese (IV)		
	i)	Write the manganes	equation for (IV) oxide	r the re	actio	n betv	veen o	conce	ntrated	hydrochloric acid and		
	ii)	What is th	e role of ma	angane	s (IV) oxid	le in tl	his rea	action	(1mk)		
c)	i)	Iron (ii) che substance	lloride react	ts with	chloi	rine g	as to f	form s	substar 1mk)	ice "E". Identify		
	ii)	During the	reaction in	c (i) a	ibove.	6.30	g of ir	ron (II	D chlo	ride were converted to		
		8.06g of si	ıbstance "E	". Čal	lculate	the v	volum	e of c	hlorin	e gas used. (Cl=35.5)		
		molar gas	at room ten	perati	re = 2	24000	cm ³	(Fe=	56)	- 8ms assa. (Cr 33.5)		
			(3mks						,			
d)		Draw and	name the st	ructur	e of th	e con	npoun	d for	med w	hen excess chlorine gas		
		is reacted	with ethane	gas.			-		2mks)	<i>G</i>		
			•••••					`	,			
		Name	• • • • • • • • • • • • • • • • • • • •									
8.	The grid b	elow represe	nts part of t	the per	iodic	table.	Stud	ly it a	nd ans	wer the questions that		
1	follows:- [The letter giv	en do not re	eprese	nt the	actua	l sym	bols c	of the e	elements.		
			-									
				L			A					
		В		C		D		E				
		F G					L					
								Н				
i)	Select	the element	that can for	m an i	on wi	th a c	hange (2ml	of-2.	Expla	in your answer.		
ii)	What t	type of struct	ure would t	he oxi	de of	C has	e? Es	mlain	vour e	newer		
•		,		0.11		· 114	, O. 102	.p.um	your	(2mks)		
iii)	How d	loes reaction	of H compa	are wit	h that	of E	?			(2mks)		
iv												
v)	Evnlei	n how you s	ould evec	t tha f	110	na te						
•,	a)	Explain how you would expect the following to compare. a) Atomic radii of "F" and "G" (1mk)										
	b)	The pH val				of or	vidac .	of D o	nd D	(1mk)		
	υ,	THE PLE VAL	ucs of aque	ous so	านนบบ	l Ol Oz	kides (orma	ina i i	(Zmkg)		

vi) The table below shows some physical properties of some substances. Use the information in the table to answer the questions that follow:-

			Electrical conductivity			
Substances	Melting	Boiling point ⁰ C	Solid	liquid		
U	1083	2595	Good	Good		
V	801	1413	Poor	Good		
W	5.5	80.1	Poor	Poor		
X	-114.8	-84.9	Poor	Poor		
Y	3550	4827	Poor	poor		

i)	Which substar	ice is likely to be	(1mk)	
-7	(I)	A metal	(lmk)	
	. (II)	Liquid at room temperature		(lmk)
	ii) Which	substance is likely to have the	following structures?	
	(I)	Simple molecular		(lmk)
	(II)	Giant atomic		(lmk)
10 Lithium, so	dium and potas	sium belong to the same group	of the periodic table	
i)	Arrange the el	ements in the order of increasi	ng ionization energy.	(1mk)
ii)		end in 2(i) above	(2mks)	
,	-			

12. The table below gives atomic and mass numbers of some elements represented by letters "T" to "Y".

The letters are not actual symbols of elements. Use it to answer questions that follows:-

Elements	T	U	V	W	X	Y
Atomic numbers	1	18	1	19	20	17
Mass numbers	2	39	1	39	40	35

a) Which element has the lowest ionization energy? (2mks)

Element "V" is uniquely positioned in the periodic table. It has a tendency of forming compounds by either gaining or sharing electrons. Give the formula of a compound of "V" that is formed when V gain an electron.

a) What observations would be made if chlorine gas is bubbled through aqueous sodium iodide? Explain using an ionic equation. (1mk)

b) Under certain conditions chlorine and iodine react to give iodine trichloride (LCl_{3 (s)}). What type of bonding would you expect to exist in iodine trichloride? Explain.

(1mk)