ENERGY CHANGES MARKING SCHEME

1. 1989 Q2 P1

- Reaction is exothermic
- Vanadium (v) oxide

2. 1990 Q15 P1

(a) Reasons, both dissolution of KOH and neutralization by HCL are taking place

Moles of HCL = $100 \times 1 = 0.1$ moles 0.1 moles of HCL gives 0.05 mole of Hydrogen gas Volume of Hydrogen = 24×0.05 = 2.96

(b) $H_2 = H_1 = H_3$

3. 1990 Q23 P1

Specific heat capacity = $4.2 \times 40 \times 31.1 - 24.21$) = $4.2 \times 40 \times 6.9 = 159.25$ Kj/mol Molar heat of neutralization = 1159.2×1000 $10000 \times 20 \times 1$ = 57.91 kj/mol

4. 1990 Q27 P1

(a) (1) (a) $CH_3CH_2 OH_{(q)} + 3O_2 \longrightarrow 2CO_2 + 3H_3O$

(ii) I Heat absorbed = $4.2 \times 500 \times 60 = 126.0$ kj II R.F.M. of ethanol = 465g of ethanol gives 126.0kj 46g of ethanol gives = 46×126 5 = 1159.2K5mo⁻¹

(b) (i) $CH_3CH_2OH \longrightarrow CH_3CH_2CHOH \longrightarrow CH_3OH$ $1490 \longrightarrow 110 \longrightarrow 710$ For $CH_3CH_2CH_2CH_2OH \longrightarrow 1490 + 390 = 1880 + 330$ $1870 \longrightarrow 1910$

Extrapolation graph value

 $= 1880 \pm 10$ = 1870- 1890 (ii) (I) For every CH2 increase by a constant as the number of carbon atoms increase there is a constant increase in enthalpy of combustion

(II) the higer the RMF the higher the enthalpy

(c) (i) I Enthalpy of hydration II Enthalpy of solution

$$\begin{array}{ll} (\mathrm{iii})\Delta\mathrm{H3} &= \Delta\mathrm{H} + \Delta\mathrm{H} \\ &= (2237 - 2378)\mathrm{Kj} \\ &= 141\mathrm{kj} \end{array}$$

5. 1991 Q5 P1

- (i) $C(s) + 2H_2(g) \longrightarrow CH_4(S)$
- (ii) $\Delta H = -393.5 + 2(-2285.8) (-890.4)$

= 74KJ/ mol (Accept kj only)

6. 1992 Q4 P1

R .F.M of CH₃ OH =
$$(12+4+16)$$
 = Heat = $\frac{93.5 \times 32}{4}$ = 748kj/ Mole

7. 1992 Q10 P1

Н- Н →	2H,	H = +435
CL-CL→	CL,	H = +243

$$\Delta 2H + 2CL \rightarrow 2(H-Cl) + 2 \times (-431)$$

$$\Delta H reaction = -863 + 435 + 243$$

$$= -184KJ$$

8. 1993 Q2 P1

Mole gives 369 $1^{1}/_{5} = 0.2$ moles 4Ne $\frac{0.2 \times 369}{5} = 339$

0r Fe(s) \longrightarrow Fe (g) H = 15.4 + 354 = 369.4 kj56(g) gives 369.4 kj Heat produced by 11.2 g $= \frac{11.2 \times 369.3}{56}$ = 73.9 kj

9. 1993 Q4 P1

 Δ H(-4036 -364) Δ H = 771-770 = kj

10. 1993 Q10 P1

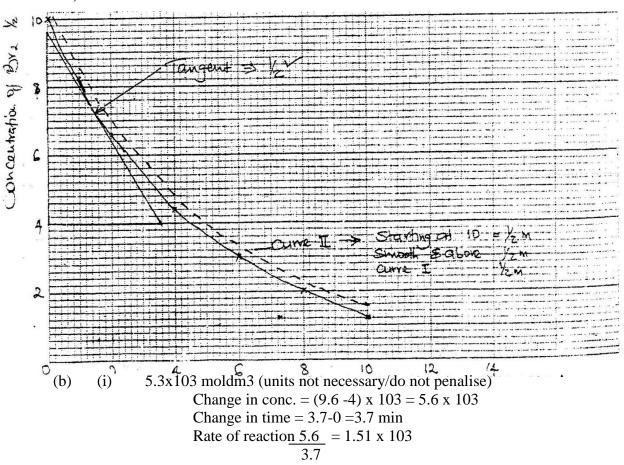
Yield would increase; reasons-reaction is endothermic.

389-100 = -289kj or + 22 + -311 = 289kj

12. 1994 Q18 P1

(a) Mg (s) + Fe²⁺ $Mg^{2+}(aq) + Fe(s)$ (b) Heat change = 100g ×6.0°C × g-1 = 2520j

14. 1995 Q26 P1


Enthalpy of neutralization between $CH_3 CaOH_{(aq)}$ and $NaOH_{(aq)}$ is lower than that between HCl _(aq) and NaOH because $CH_3 CaOH_{(aq)}$ is a weak acid which does not dissociate fully in water thus some of heat produced is used for dissociation fully dissociated and partially dissociated. (2 marks)

15. 1996 Q19 P1

- a) The energy change that takes place when one mole of the compound is formed from its constituents elements in their state
- b) 3 x-286 = 2 x-394-(277)
 858 + 788+ 277 = 11369 kjmol

```
16. 1997 Q20 P1
```


- (c) At high concentration the rate of reaction is high because the more particles in solution collide at high frequency.
- (d) At lower temps; the particles have less K.e / frequency of collision is reduced/ few particles/ less activation energy.

17. 1997 Q20 P1

$$\Delta H = 500 \text{ x } 9 \text{ x } 4.2$$

$$\Delta H = 18900 \text{ J}$$

18900 J produced by 0.6 x 38000
18900
= 12.06

18. 1998 Q16 P1

(a) ΔH_1 – Bond breaking/ activation Energy

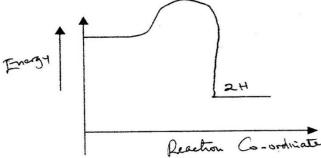
 Δ H₃ – Energy evolved during reaction

(b)
$$-\Delta H_3 = \Delta H_1 + \Delta H_2$$

 $CH_4(g) + Cl_2(g) \rightarrow CH_3Cl(g) + HCl(g)$
 $H + Cl_2(g) \rightarrow CL_3Cl(g) + HCl(g)$
 $H + Cl_2(g) + HCl(g) + HCl(g)$
 $H + H + Cl_2(g) + HCl(g) + HCl(g)$
 $H + H + Cl_2(g) + HCl(g) + HCl(g) + HCl(g)$
 $H + H + HCl_2(g) + HCl(g) + HCl(g) + HCl(g) + HCl(g)$
 $H + H + H$

19. 1999 Q15 P1

Hp (products) – Hr (reactants)


(i) 1207-(-394 - 365) = -1207 + 394 - 635 = 178 kj2 marks with -ve sign but 1 without OR 394 + 635 = 1029 = -1207 + 1029= -178 kj or any other acceptable method

20. 1999 Q6d P2

 $2SO_2(aq) + O_2(g) \longrightarrow 2SO_3(g)$

- (i) A reaction where heat is lost to the surroundings
- (ii) Lower (1) through by the principal, the yield is expected to increase, the rate of reaction is lower (I) because the reacting molecules have lower kinetic energy (I)

21. 2000 Q24 P1

22. 2001 Q2 P1

Experiment II. At a high temperature the particles have more energy, hence rate of high energy collisions increase.

23. 2002 Q13 P1

(a) Lattice energy (a) (b) Let the heat be H_3 $H_{3-} - 701 = 15$ (l) $H_3 = 686$ kJ mol -1

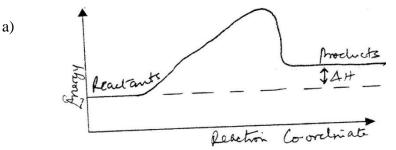
(2 marks)

24. 2003 Q3 P1 $2Al_{(s)} + {}^{3}/{}_{2} O_{2}$ \longrightarrow $Al_{2}O_{3}, \triangle H = -1673.6 \text{ Kjmol}^{-1}(i)$ $Fe_{2} O_{3} + Fe_{2} O_{3(s)}$ \longrightarrow $2Fe + {}^{3}/{}_{2} O_{2}, \triangle H = 836.8 \text{KJ mol} -$

25. 2003 Q5 P1 $H \longrightarrow H^+ + e^{\binom{1}{2}} \bigtriangleup H \text{ is } + ve^{\binom{1}{2}}$ $H + e \longrightarrow H^{\binom{1}{2}} \bigtriangleup H \text{ is } -ve^{\binom{1}{2}}$

26. 2004 Q5 P1

Moles of BaCl₂=600 x 1 = 0.6 Heat change when 0.6 moles of BaCl₂ are used = 17.7 x 0.6 ($\frac{1}{2}$) = 10.62KJ 1500 x 4 Δ T = 10.62 (1) 1.5 x 4.2 x_{Δ} T 10.62 Δ T = <u>10.62</u> 1500x4.2 or Δ <u>10.62</u> 1.5 x 4.2 = <u>1.68570+</u> = <u>1.68570+</u> = <u>1.6857 or 1.7</u>


27. . 2004 Q9 P1

Working out the differences between any two consecutive alcohols (1) . There is a constant increase in mass caused by constant addition of CH_2 OR

This is a homologous series in a constant increase in mass.

(3 marks)

28. 2004 Q25 P1

d) Endothermic (1) products are at a higher energy level than the reactants.(1)

29. 2005 Q13 P1

From the equation: 1 mole of metane produces 890kj Hence 890 Kj = 24 litres 111.25 KJ = 111.25 x 24 litres = 3 litres

30. 2005 Q19 P1

a) Molar heat of fusion

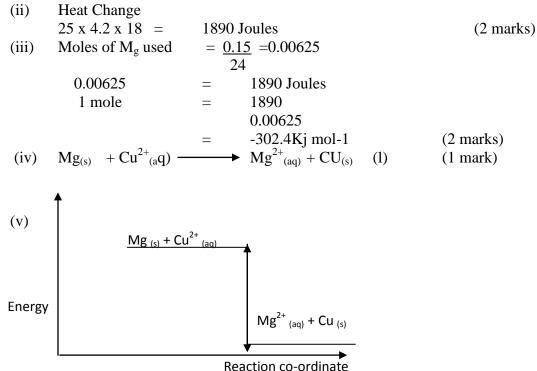
b) $-\Delta H^3$ process to exothermic (heat given out to the surrounding)

31. 2006 Q9 P1

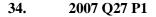
a) Mass

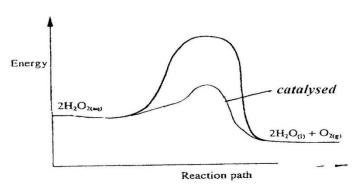
- Pale yellow intensifies.
- Forward reaction is exothermic
- Lowering temperature shifts the equilibrium to the right. $(1 \frac{1}{2} \text{ marks})$

b)


- Pale yellow intensified
- Reducing the volume of syringe.
- Increases the pressure
- The equilibrium shifts to the rights.

32. 2006 Q28 P1


- a) $\triangle H_1 = \text{Lattice energy}$
 - $\Delta H_2 = Hydration energy$ (2 marks)
- b) $\triangle H_3 = \triangle H_2$ (1 mark)


33. 2006 Q2a P2

a) (i) The blue colour of solution fades. Brown solid is deposited because the coloured copper ions are discharged to form copper. (3 marks)

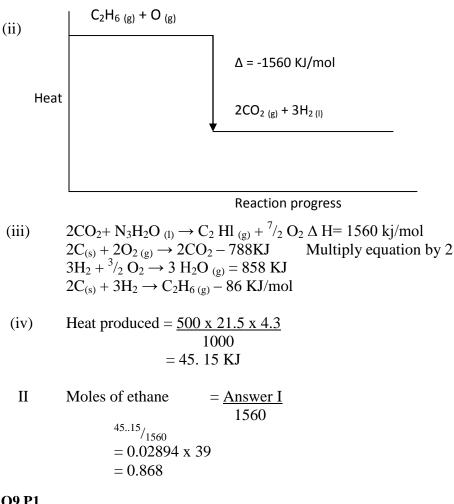
Reaction co-ordinateb) Zinc is higher than copper in the reactivity series of zinc is more reactive than
copper or zinc will dissolve in the solution leading to weakening of the container
or Redox reaction will take place.(2 marks)

35. 2007 Q1 P2

- (a) The type of flame produced
 - Amount of heat produced
- (b) (i) Heat produced = MC Δ T

$$\Delta T = 46.5 = 25 = 21.5^{\circ} C$$

 $\Delta H = 450 \text{ x } 21.5 = 40635 \text{ Joules}$


(ii) Moles of ethanol =
$$\frac{1.5}{46} = 0.0326$$

Molar heat = $\frac{40635}{0.0326} = 1246472.392$ Joules
(c) C₂H₅OH + 3O₂ \rightarrow 2CO₂ + 3H₂O
(aq) (g) (l)

(d) - Heat less by radiation, conduction and convectional current

- Experimental errors when reading thermometer

36. 2008 Q7 P2

- (a) The heat change when mole of substance is formed from its constituent elements.
- (b) (i) Heat of combustion of hydrogen Heat of formation of water stream

37. 2009 Q9 P1

(a) Heat change when one mole of a solute dissolve in excess of the solvent (1)

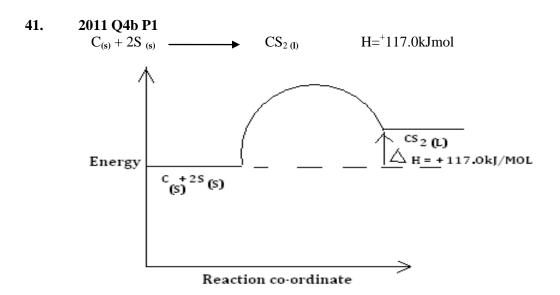
(i) $\Delta H_1 = +733$ kj Mol -1 Until no further Δ in temperature $\Delta H_2 = 406$ kJ mol -1 / Infinitely dilute solution $\Delta H_3 = 335$ kJ mol -1

(ii) Molar heat of solution
Must be correct
$$(733 - (+406 + 335 = 733 - 406 - 335)$$

= -8 kJ Mol -1 (3 marks)

38. 2010 Q10 P1

- a) Enthalpy of formation of hydrogen peroxide or enthalpy of formation
- (b) $\Delta H_1 + \Delta H_3 = \Delta H_2 \implies \Delta H_2 = \Delta H_2 \Delta H_1$ = - 285.8 - (-187.8) = 187.8 - 285.8 = - 98 kJmol⁻¹


39. 2010 Q12 P1

a)
$$CU^{2+}_{(aq)} + Fe_{(s)} Cu_{(s)} + Fe^{2+}_{(aq)}$$

(b) $\Delta H = MC\Delta T$; = 75.0 x 4.2 x 5.6 = - 1764.5 Moles of Cu = 5.83 = 0.0918 63.5 $\Delta H/mol = 1764$ = -19215J (must have a -ve sign) 0.0918 = - 19.2kJmol⁻¹

40. 2010 Q4b P1

(b) i) $C_{(s)} + 2H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow CH_3OH_{(g)} \quad \Delta H = 239 \text{kJmol}^{-1}$ ii) (I) Yield increases Equilibrium shifts to the right (II) . iii) Enthalpy of formation of CO was not included.

42. 2011 Q7 P2

(a) Amount of heat liberated / energy change when one mole of substance is burnt in

excess oxygen .

(b)Heat absorbed/ evolved in a chemical change is the same regardless of the route taken.

(i) $3C(s) + 4H_{2(g)} \longrightarrow C_3H_{8(g)}$

(c)

- Cost
- Availability
- Easy of transportation
- Storage
- Effect on environment

(d)

- Ethanoic acid is a weak acid some heat is used to ionize before neutralization occurs.
- Ethanoic acid decomposes partially than another one.

43. 2012 Q17 P1

- (a) Heat of reaction / heat change / enthalpy of reaction or molar heat of reaction.
- (b) using a catalyst
 - A catalyst lowers /reduces the activation energy