ORGANIC CHEMISTRY II MARKING SCHEME

1. 1990 Q28

(a) (i) Hydrogen

(ii) $I - Q - CH_3CH-CH_2$ propane

- II S- CH₃CH₃COOH Propane acid
- (iii) Addition/Bromination/halogenation
- (iv) I –Ethanol

II-Few drops of conc H₂SO₄

III Warm(heat) Temp<80^oc consumes energy/reaction is exothermic

2. 1994 Q4

- (a) (i) Pentanoic acid
 - (ii) C₃H₆O
 - (iii) 163<u>+</u>2
 - (iv) The boiling point increases with increase in CH₂ i.e with increase of carbon.This is because the molecular mass increases in CH₂, it follows that this increase in intermolecular force, will require more heat to break the bond.
- (b) Effervescence, colourless gas is given off/CO₂ is given off(turns lime water turbid)
- (c) Let the volume be Vcm^3

Moles of NaOH = V x $\frac{0.2}{100}$

Moles of C₃COOH =
$$\frac{3,0}{60}$$
 = 0.05
Since 1 mole of NaOH = 1 mole of C₃COOH
V x $\frac{0.2}{100}$ = 0.05
V = $\frac{0.05}{0.2} \times 1000 = 250 \text{ cm}^3$

3. 1996 Q5 P2

a) i) $C_2H_4O_2$. Its M.P is higher than $10^{\circ}C$

- ii) C_5H_{12} and C_6H_{14} C_6H_{14} has a higher M.P therefore stronger van der waal force / intermolecular forces.
- iii) C_3H_8O is more soluble in water than $C5H_{12}$ because it forms hydrogen bonds with water molecules OR because it is polar due to the presence of OH / OH mixes with water (Hydrogen bond if formed)
- b) i) C_4H_8
 - ii) $C_4H_8 + 6O_2 \longrightarrow 4 CO_2 + 4 H_2O$

c) i)

- ii) Concentrated sulphuric acid / Al_2O_3 / Concentrated phosphoric acid. Heat (160 – 180°C)
- d) i) Saponification / Hydrolysis. (1 mark)
 - ii) Esters / fats

(1 mark)

4. 1997 Q2 P2

a) i) Buta
$$-1 - ol$$

- ii) Propanoic acid
- iii) Ethylethanoate.
- b) i) CnH_2n n = No. of carbon atoms
 - ii) $70(\text{not } 70\text{g if } \text{g} = \frac{1}{2} \text{ mark})$
 - iii) C_5H_{10} ; $CH_3CH = CHCH_2 CH_3$. $CH_3CH = CCH_3$

5. 1998 Q21 P1

(a) Polystyrene or polyphenylethene

6. 1999 Q5 P1

- (a) (i) Propanoic acid
 - (ii) Esters
- (b)The colour of the solution changes from orange yellow to green (I) because (is reduced to Cr while ethanol is oxidized to ethanol acid (I)
- (c) (i) Soap / Soap detergent
 - (ii) Sodium chloride
 - (iii)-to make Soap float (w.t.t.e)
 - (i) -A molecule of the cleansing agent has polar () and non polar parts.(1/2)Non-polar parts dissolve in oil (1/2) and the polar part (1/2) dissolves in water when the mixtures is agitated (1/2) the oil droplets coagulate and can be washed away with water.

7. 2000 Q5 P1

- (a) (i) Pent -2 –ene
 - (ii) Butanoic acid
- (b) (i) substitution
 - (ii) Addition
- (c) (i) $2C_4H_{10(g)} + 130_2(g) \longrightarrow 8CO_{2(g)} + 10H_{2(l)}$

- (ii) Carbon dioxide (CO_2) is produced. This then dissolves in water, forming an acid solution.
- (d) (i) Process where monomers (small molecules) form together to form large molecules (polymers)

- -Easily moulded/made into many shapes
- -Not attacked by acids or alkalis
- -corrosion resistant

8. 2001 Q2 P2

- (a) (i) Alkyline
 - (ii) Carboxylic acid or Alkanoic acid
- (b)(i) Vulcanisation
 - (ii) To harden rubber
 - To make it tougher/ stronger
 - To make it durable
 - To last longer
 - (any answer cancels the correct)

(c) (i)
$$2CH_3CH_2CH_2OH(I) + 2 K (I) \rightarrow 2CH_3CH_2CH_2OK(s) + H_2(g)$$

- (State symbols not necessary in equations involving organic)
- (ii) I Dehydration
 - II Hydrogenation
- (iii) A 1,2 dibromopropane or formula, $CH_2Br CHBrC_3$ B Ethene or formula C_4H_4
- (iv) Nickel/ Palladium/ Platinum
- (v)

Н		CH ₃ H	Н	Н	Н	
C - C	OR	C - C	OR - C -	С	- C	OR CH ₃ CH
Н		Н Н	Н	Η	Η	

- (d) Production of hydrogen
 - Production of carbon tetrachloric
 - Production of acetylene or ethane
 - Production of carbon black used for making printers ink
 - Preparation of methanol
 - Preparation of chloroform

- 9. 2002 Q7 P2
 - (a) Write the structural formula of:

(i) Methanol

CH₃OH OR H - C - OH H

(ii) Methanoic acid

(b) Write the equation for the reaction between methanoic acid and aqueous sodium hydroxide NaOH(aq) + HCOOH(aq) → HCOONa(aq) + H₂O(aq)

(1 mark)

(c) (i) Name the product formed when methanol reacts with methanoic acid Methylmethanoate // $HCOOCH_3$ // $H - C - O - CH_3$

(ii) State one condition necessary for the reaction in © (i) above to take

Place

- add conc. H_2SO_4

- Heat to 180° C // warm // heat
- (d) (i) Describe one chemical test that can be used to distinguish between

hexane and hexane

- Use a bromine water // acidified potassium permanganate
- If hexane they will be decoloured
- If hexane no decolourisation

(ii) State one use of hexane

Fuel // solvent // manufacture hexanol // hexanoic acid, hexanol

(iii) Hydrogen gas reacts with hexane form hexane. Calculate the volume or hydrogen gas required to convert 42g of hexane to hexane at S.T.P (C = 12.0, H = 1.0, Molar gas volume at S.T.P is = 22.4 litres). (4 marks)

 $C_6H_{12} + H_2 = C_6 H_{14}$ mole ratio = 1:1

R.MM of hexane = ${}^{42}/_{84} = 0.5$ Moles of hydrogen = 0.5 Volume of hydrogen = 0.5 x 22.4 = 11.2 litres of 11 dm³

10. 2003 Q7 P2

a) Ethane burns with a pale blue flame while ethane burns with a yellow flame.
 Ethane is saturated while ethyne is unsaturated. OR Ethane burns with a non smoky flame while ethyne burns with a Smokey/sooty flame.

b)
$$-H = C - C - C - H$$
 OR $H - C - C - C - H$
 $H H$ H H H H H

- c) (i) I Oxidation II B -Ethane C - Sodium ethanoate. (ii) $CH_3 CH_2 OH_{(i)} + 30_{2(g)} \longrightarrow 2C0_{2(g)} +6H_2O$
- (ii) to bring the reacting particles in close contract for the reaction to occur.
- (iv) -Fuel
 - Manufacturer of carbon black used in making paint and paint ink
 - Manufacture of hydrogen gas
 - Manufacture of carbon disulphide
 - Manufacture of chloromethane, tetra chloromethane
 - Manufacture of hydrogen used in manufacture of ammonia
 - Manufacture of hydrogen cyanide
 - Manufacture of ethyne.

11. 2004 Q13, 23 P1

13 (a) Monomer (1)

(a) H	С		Н	Cl
I				
- <u>C</u> -	C–	or		C—
H	Н		ЦН	'н _

23. Water in test-tube 2

Soap reacts with Ca^{2+} or Mg^{2+} in hard water Soap reacts with Ca^{24} or Mg^{24}

12. 2005 Q6 P2

a) i)V1 :	$CH_3CH_2CH_2C - OH$	and
-----------	----------------------	-----

			0	
	V3	:	$CH_3CH_2CH_2C - OH$	
ii)	V2	:	$CH_3CH_2CH = CH_2$ and $V5$: $CH_3CH_2CH_2CH_2$	3
iii)	V4	:	$CH_3CH_2CH = CH_2$	

It is unsaturated compound and during polymerization the

double bond is broken to allow another monomer to combine.

(b)

	Advantage	Disadvantage
R – COO- Na+	They are cheaper compared to soap less detergents	Forms a scum with water containing calcium and magnesium ions
$R - SO_3 - Na^+$	They do not form scum with Ca^{2+} and Mg^{2+}	They are made from petroleum products or vegetable oils which are expensive.

(ii)
$$C_2 H_4 O_2(aq) + C_2 H_5 OH(l) \longrightarrow CH_3 COOC_2 H_3(l) + H_2 O(l)$$

(i) Used as solvents

In the manufacture of drugs and chemicals In flavouring and preservation of food In manufacture of synthetic fibres (iv) $2CH_3COOH(aq) + K_2 CO_3 (aq) \rightarrow 2CH_3COOK (aq) + CO_2(g) + H_2O(l)$

(d (i) Natural fibres include rubber, cellulose, wool, starch, silk etc.

(ii) Advantage; can be made into complicated shapes more easily, less expensive, not affected by acids. Alkalis, water and air, less dense and stronger.

13. 2006 Q7 P1

a) Refrigeration	(1mark)
b) - They deplete the ozone layer.	
- They cause green house effect.	(2marks)

14. 2006 Q11 P1

a)

- Acidify water with nitric acid.
- Add aqueous lead nitrate.
- Formation of white PPt shows presence of CT

b) provides essential minerals e.g Ca^{2+} (1mark)

15. 2007 Q2 P1

Mass in 500cm³ = 15 x 1.05 = 15.75g Mass in 100cm³ = 15.75 x 2 = 31.5 Molarity = $\underline{315} = 0.103$ 60

16. 2007 Q15 P1

(a) The calcium and magnesium compounds in this water cannot be decomposed by heating i.e. CaCl₂, CaSO₄, MgSO₄ and MgCl₂

(b) Ionic exchange Uses sodium carbonate (washing soda)

17. 2007 Q2 P2

- (a) (i) 2-Methyl Prop i ene 1Pent – I – yne
- (b) (i) Change from orange to green
 (ii) Effervescence and a colourless gas which burn with a 'pop' sound produced
- (c) Step 1

Fermentation: Glucose solution is mixed with yeast. The enzyme zymase from yeast converts glucose to ethanol

Step II

Dehydration: Ethanol is mixed with concentrated sulphuric acid and heated in presence of Al_2O_3 as a catalyst

(d)

(ii) H O H

(e) Produced CO₂ which causes global warming Produces acidic – compounds which causes acidic rain

19. 2008 Q4 P1

- (a) $C_{13}H_{27}COONa^+$ Regardless of charges i.e. $C_{13}H_{27}COONa$
- (b) Soapy detergent/ soaps
- (c) $(C_{13}H_{27}COO^{-})_2$ Ca or CI3H27COO)₂Mg²⁺

20. 2008 Q1c P2

- (i) Global warning
- (ii) I Ammonium nitrate
 - II Aerosols, Propellant, Freons

21. 2009 Q2 P1

- (a) Ca (HCO₃)₂ (aq) \rightarrow CaCO₃(S) + H₂O(l) + CO₂(g)
- (b) Sodium carbonate (l) Soda ash/ washing soda
 Calcium hydroxide (l) / Lime water 2 Ammonia Sol;
 Sol; Sodium per mutito/ Sodium Duminium Silicate.

22. 2009 Q25 P1

- (a) Colourless solution becomes brown/ black
- L_2 (aq)/S
- (b) Blue PPt dissolving to form a deep blue solution (l) $Cu(NH_3)_4^{2+}$ (3marks)

23. 2010 Q13 P1

- a) Margarine
 - Reagents hydrogen /H₂
 - Condition high temperature $150 250^{\circ}$ C (range must be given)
- b) Soap

Reagent – sodium hydroxide / NaOH **or** potassium hydroxide Condition – heating (Rej; warming to temperature e.g. 50° C

24. 2010 Q21 P1

- a) Chlorofluorocarbon
- b) When ozone is depicted, high energy UV radiation reach the earth, which ,may cause skin cancer to human beings.
- c) Global warming/ green house effect(Rej: acid rain

25. 2010 Q25 P1

		Test	Observation	Inference
--	--	------	-------------	-----------

To the first portion, 1cm ³ of soap solution was added	No lather formed	Water hard containing Mg^{2+}/Ca^{2+} ions
The second portion was boiled, cooled and 1cm ³ of soap solution was added	No lather formed	Permanent hardness of water
To the third portion, 3cm ³ of aqueous sodium carbonate was added, the mixture filtered and 1cm ³ of soap solution added to the filtrate.	Lather formed immediately	Na ₂ CO ₃ removed the hardness. Water was soft. Mg^{2+}/Ca^{2+} absent. Mg^{2+}/Ca^{2+} absent. Mg^{2+}/Ca^{2+} are ppted out.

25. 2011 Q15 P1

(a) $Ca(St)_2$ or Mg $(St)_2$ ac Ca(St)₂ or MgSt₂

(b)
$$Ca^{2+}_{(aq)} + Co_{3}^{2-}_{(aq)} \longrightarrow CaCo_{3(s)}$$

Or
$$Mg^{2+}_{(aq)} + Co_3^{2-}_{(aq)} \longrightarrow MgCo_{3(s)}$$

26. 2012 Q10 P1

(a) Mg^{2+} , Ca^{2+} or magnesium ions, calcium ions

[rej Mg or Na

(b) Mg^{2+} or Ca^{2+} ions are exchanged with Na^{+} ions in the resion

Or

Ions in hard water are exchanged with Na⁺ ions in the exchange resins or $2R-Na + Ca^{2+} \longrightarrow R_2 - Ca + 2Na^+$ $2R-Na + Mg^{2+} \longrightarrow R_2 - Mg + 2Na^+$

27. 2012 Q21 P1

- plastic bottles
- Packaging of materials, Ceiling boards
- Making crates
- Toothbrush handles
- Cups, plates
- Building materials
- Models dummies

28. 2012 Q2 P2

(2 marks)

(a) H Cl Cl Cl

$$| \ | \ |$$

H - C - C - Cl H - C - C - H
 $| \ | \ |$
H Cl H Cl H Cl

- (b) Identify correct reagent √ correct observation √ (4 marks)
 Ethene When bubbled through acidified Kmno₄, the Kmno₄ is decolourised, while ethane does not decolourise.
 - Ethene burns with smoky flame, while ethane does not burn with smoky flame.
- (c) (i) concentrated sulphuric (vi) acid or Al_2O_3 or H_3PO_4 (1 mark) if sulphuric acid is written $\frac{1}{2}$ mark

(ii)
$$\begin{pmatrix} H & CH_3 \\ | & | \\ -C - C - | \\ | & | \\ H & H \end{pmatrix}$$
 or
$$\begin{pmatrix} -CH - CH_2 - | \\ | \\ CH_3 \end{pmatrix}$$
 (1 mark)

- (iii) $2CH_3CH_2COOH + Na_2CO_3 (s) \rightarrow 2CH_3CH_2COONa + CO_2 (g)$ Ignore the states (1 mark)
- (iv) $2C_{3}H_{8}O + 9O_{2} \longrightarrow 6CO_{2} + 8H_{2}O \sqrt{1}$ (3 marks) Moles of $CO2 = \frac{^{18}}{_{24}} = 0.75$ moles $\sqrt{\frac{1}{_{2}}}$ Moles of propan $= \underbrace{0.75 \text{ x } 2}_{6} = 0.25$ moles $\sqrt{\frac{1}{_{2}}}$ 1 mole of $C_{3}H_{8}O \longrightarrow 60g \sqrt{\frac{1}{_{2}}}$ 0.25 moles $\longrightarrow ?$ $= 15g \sqrt{\frac{1}{_{2}}}$