ORGANIC CHEMISTRY II MARKING SCHEME

1. $\mathbf{1 9 9 0} \mathbf{Q} 28$
(a) (i) Hydrogen
(ii) $\mathrm{I}-\mathrm{Q}-\mathrm{CH}_{3} \mathrm{CH}-\mathrm{CH}_{2}$ propane

II S- $\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{COOH}$ Propane acid
(iii) Addition/Bromination/halogenation
(iv) I -Ethanol

II -Few drops of conc $\mathrm{H}_{2} \mathrm{SO}_{4}$
III Warm(heat) Temp $<80^{\circ} \mathrm{c}$ consumes energy/reaction is exothermic

2. 1994 Q4

(a) (i) Pentanoic acid
(ii) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
(iii) 163 ± 2
(iv) The boiling point increases with increase in CH_{2} i.e with increase of carbon. This is because the molecular mass increases in CH_{2}, it follows that this increase in intermolecular force, will require more heat to break the bond.
(b) Effervescence, colourless gas is given off/ CO_{2} is given off(turns lime water turbid)
(c) Let the volume be Vcm^{3}

Moles of $\mathrm{NaOH}=\mathrm{V} \times \frac{0.2}{100}$
Moles of $\mathrm{C}_{3} \mathrm{COOH}=\frac{3,0}{60}=0.05$
Since 1 mole of $\mathrm{NaOH}=1$ mole of $\mathrm{C}_{3} \mathrm{COOH}$
$\mathrm{V} \times \frac{0.2}{100}=0.05$
$\mathrm{V}=\frac{0.05}{0.2} \times 1000=250 \mathrm{~cm}^{3}$

3. 1996 Q5 P2

a) i) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$. Its M.P is higher than $10^{\circ} \mathrm{C}$
ii) $\quad \mathrm{C}_{5} \mathrm{H}_{12}$ and $\mathrm{C}_{6} \mathrm{H}_{14}$
$\mathrm{C}_{6} \mathrm{H}_{14}$ has a higher M.P therefore stronger van der waal force / intermolecular forces.
iii) $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ is more soluble in water than $\mathrm{C}_{5} \mathrm{H}_{12}$ because it forms hydrogen ${ }^{`}$ bonds with water molecules OR because it is polar due to the presence of $\mathrm{OH} / \mathrm{OH}$ mixes with water (Hydrogen bond if formed)
b) i) $\quad \mathrm{C}_{4} \mathrm{H}_{8}$
ii) $\mathrm{C}_{4} \mathrm{H}_{8}+6 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
c) i)

ii) Concentrated sulphuric acid $/ \mathrm{Al}_{2} \mathrm{O}_{3} /$ Concentrated phosphoric acid. Heat ($160-180^{\circ} \mathrm{C}$)
d) i) Saponification / Hydrolysis.
ii) Esters / fats

4. 1997 Q2 P2

a) i) Buta - 1-ol
ii) Propanoic acid
iii) Ethylethanoate.
b) i) $\mathrm{CnH}_{2} \mathrm{n} \quad \mathrm{n}=$ No. of carbon atoms
ii) $\quad 70(\operatorname{not} 70 \mathrm{~g}$ if $\mathrm{g}=1 / 2 \mathrm{mark})$
iii) $\quad \mathrm{C}_{5} \mathrm{H}_{10} ; \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3} . \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CCH}_{3}$

5. 1998 Q21 P1

(a) Polystyrene or polyphenylethene
6. $\quad 1999$ Q5 P1
(a) (i) Propanoic acid
(ii) Esters
(b)The colour of the solution changes from orange yellow to green (I) because (is reduced to Cr while ethanol is oxidized to ethanol acid (I)
(c) (i) Soap / Soap detergent
(ii) Sodium chloride
(iii)-to make Soap float (w.t.t.e)
(i) -A molecule of the cleansing agent has polar () and non polar parts. $(1 / 2)$ Non-polar parts dissolve in oil ($1 / 2$) and the polar part ($1 / 2$) dissolves in water when the mixtures is agitated (1/2) the oil droplets coagulate and can be washed away with water.
7. 2000 Q5 P1
(a) (i) Pent - 2 -ene
(ii) Butanoic acid
(b) (i) substitution
(ii) Addition
(c) (i) $\quad 2 \mathrm{C}_{4} \mathrm{H}_{10(\mathrm{~g})}+13 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 8 \mathrm{CO}_{2(\mathrm{~g})}+10 \mathrm{H}_{2(\mathrm{l})}$
(ii) Carbon dioxide $\left(\mathrm{CO}_{2}\right)$ is produced. This then dissolves in water, forming an acid solution.
(d) (i) Process where monomers (small molecules) form together to form large molecules (polymers)

(e) -Cheaper
-Can be made on demand

-More durable

-Easily moulded/made into many shapes
-Not attacked by acids or alkalis
-corrosion resistant

8. 2001 Q2 P2

(a) (i) Alkyline
(ii) Carboxylic acid or Alkanoic acid
(b) (i) Vulcanisation
(ii) - To harden rubber

- To make it tougher/ stronger
- To make it durable
- To last longer
(any answer cancels the correct)
(c) (i) $\quad 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ (I) +2 K (I) $\rightarrow 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OK}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g})$
(State symbols not necessary in equations involving organic)
(ii) I Dehydration

II Hydrogenation
(iii) A 1,2-dibromopropane or formula, $\mathrm{CH}_{2} \mathrm{Br}-\mathrm{CHBrC}_{3}$

B Ethene or formula $\mathrm{C}_{4} \mathrm{H}_{4}$
(iv) Nickel/ Palladium/ Platinum
(v)

(d) - Production of hydrogen

- Production of carbon tetrachloric
- Production of acetylene or ethane
- Production of carbon black used for making printers ink
- Preparation of methanol
- Preparation of chloroform

9. $\quad 2002$ Q7 P2

(a) Write the structural formula of:
(i) Methanol
(1 mark)
$\mathrm{CH}_{3} \mathrm{OH} \quad \mathrm{OR} \quad \mathrm{H}-\stackrel{\left.\right|_{\mathrm{H}} ^{\mathrm{C}}}{\mathrm{C}}-\mathrm{OH}$
(ii) Methanoic acid

(b) Write the equation for the reaction between methanoic acid and aqueous sodium hydroxide
$\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCOOH}(\mathrm{aq}) \rightarrow \mathrm{HCOONa}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$
(c) (i) Name the product formed when methanol reacts with methanoic acid Methylmethanoate // $\mathrm{HCOOCH}_{3} / / \mathrm{H}-\mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$
(ii) State one condition necessary for the reaction in © (i) above to take

Place

- add conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
- Heat to $180^{\circ} \mathrm{C} / /$ warm // heat
(d) (i) Describe one chemical test that can be used to distinguish between hexane and hexane
- Use a bromine water // acidified potassium permanganate
- If hexane they will be decoloured
- If hexane no decolourisation
(ii) State one use of hexane

Fuel // solvent // manufacture hexanol // hexanoic acid, hexanol
(iii) Hydrogen gas reacts with hexane form hexane. Calculate the volume or hydrogen gas required to convert 42 g of hexane to hexane at S.T.P ($\mathrm{C}=12.0, \mathrm{H}$ $=1.0$, Molar gas volume at S.T.P is $=22.4$ litres $)$. (4 marks)
$\mathrm{C}_{6} \mathrm{H}_{12}+\mathrm{H}_{2}=\mathrm{C}_{6} \mathrm{H}_{14}$ mole ratio $=1: 1$
R.MM of hexane $={ }^{42} / 84=0.5$

Moles of hydrogen $=0.5$
Volume of hydrogen $=0.5 \times 22.4=11.2$ litres of $11 \mathrm{dm}^{3}$
10. $\quad 2003$ Q7 P2
a) Ethane burns with a pale blue flame while ethane burns with a yellow flame.

Ethane is saturated while ethyne is unsaturated. OR Ethane burns with a non smoky flame while ethyne burns with a Smokey/sooty flame.
b)
 OR

c) (i) I Oxidation

II B -Ethane
C - Sodium ethanoate.
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}_{(\mathrm{i})}+30_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}$
(ii) to bring the reacting particles in close contract for the reaction to occur.
(iv) -Fuel

- Manufacturer of carbon black used in making paint and paint ink
- Manufacture of hydrogen gas
- Manufacture of carbon disulphide
- Manufacture of chloromethane, tetra chloromethane
- Manufacture of hydrogen used in manufacture of ammonia
- Manufacture of hydrogen cyanide
- Manufacture of ethyne.

11. 2004 Q13, 23 P1

13 (a) Monomer (1)

23. Water in test-tube 2

Soap reacts with Ca^{2+} or Mg^{2+} in hard water
Soap reacts with Ca^{24} or Mg^{24}

12. 2005 Q6 P2

a) i)V1 : $\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}-\mathrm{OH} \quad$ and

It is unsaturated compound and during polymerization the
double bond is broken to allow another monomer to combine.
(b)

	Advantage	Disadvantage
$\mathrm{R}-\mathrm{COO}-\mathrm{Na}+$	They are cheaper compared to soap less detergents	Forms a scum with water containing calcium and magnesium ions
$\mathrm{R}-\mathrm{SO}_{3}-\mathrm{Na}^{+}$	They do not form scum with Ca and Mg^{2+}	They are made from petroleum products or vegetable oils which are expensive.

I (i) Easters
(ii) $\quad \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l}) \rightleftarrows \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{3}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}$ (l)
(i) Used as solvents

In the manufacture of drugs and chemicals
In flavouring and preservation of food
In manufacture of synthetic fibres
(iv) $2 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{CH}_{3} \mathrm{COOK}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(d (i) Natural fibres include rubber, cellulose, wool, starch, silk etc.
(ii) Advantage; can be made into complicated shapes more easily, less expensive, not affected by acids. Alkalis, water and air, less dense and stronger.
13. 2006 Q7 P1
a) Refrigeration
(1mark)
b) - They deplete the ozone layer.

- They cause green house effect.

14. 2006 Q11 P1

a)

- Acidify water with nitric acid.
- Add aqueous lead nitrate.
- Formation of white PPt shows presence of CT
b) provides essential minerals e.g Ca^{2+} (1mark)

15. 2007 Q2 P1

Mass in $500 \mathrm{~cm}^{3}=15 \times 1.05=15.75 \mathrm{~g}$
Mass in $100 \mathrm{~cm}^{3}=15.75 \times 2=31.5$
Molarity $=\frac{315}{60}=0.103$
16. 2007 Q15 P1
(a) The calcium and magnesium compounds in this water cannot be decomposed by heating i.e. $\mathrm{CaCl}_{2}, \mathrm{CaSO}_{4}, \mathrm{MgSO}_{4}$ and MgCl_{2}
(b) Ionic exchange

Uses sodium carbonate (washing soda)
17. 2007 Q2 P2
(a) (i)

2-Methyl - Prop - i - ene
1Pent - I - yne
(b) (i) Change from orange to green
(ii) Effervescence and a colourless gas which burn with a 'pop' sound produced
(c) Step 1

Fermentation: Glucose solution is mixed with yeast. The enzyme zymase from yeast converts glucose to ethanol

Step II

Dehydration: Ethanol is mixed with concentrated sulphuric acid and heated in presence of $\mathrm{Al}_{2} \mathrm{O}_{3}$ as a catalyst
(d)

(ii)

H O
H

(e) Produced CO_{2} which causes global warming Produces acidic - compounds which causes acidic rain
19. 2008 Q4 P1
(a) $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{COONa}^{+} \quad$ Regardless of charges i.e. $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{COONa}$
(b) Soapy detergent/ soaps
(c) $\left(\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{COO}-\right)_{2} \mathrm{Ca}$ or CI 3 H 27 COO$)_{2} \mathrm{Mg}^{2+}$
20. 2008 Q1c P2
(i) Global warning
(ii) I Ammonium nitrate

II Aerosols, Propellant, Freons
21. 2009 Q2 P1
(a) $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~S})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
(b) Sodium carbonate (l) Soda ash/ washing soda

Calcium hydroxide (1) / Lime water ${ }_{2}$ Ammonia Sol;
Sol; Sodium per mutito/ Sodium Duminium Silicate.
22. 2009 Q25 P1
(a) Colourless solution becomes brown/ black $\mathrm{L}_{2}(\mathrm{aq}) / \mathrm{S}$
(b) Blue PPt dissolving to form a deep blue solution (l) $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}$
23. 2010 Q13 P1
a) Margarine

Reagents - hydrogen $/ \mathrm{H}_{2}$
Condition - high temperature $150-250^{\circ} \mathrm{C}$ (range must be given)
b) Soap

Reagent - sodium hydroxide / NaOH or potassium hydroxide
Condition - heating (Rej; warming to temperature e.g. $50^{\circ} \mathrm{C}$
24. 2010 Q21 P1
a) Chlorofluorocarbon
b) When ozone is depicted, high energy UV radiation reach the earth, which ,may cause skin cancer to human beings.
c) Global warming/ green house effect(Rej: acid rain
25. 2010 Q25 P1

Test	Observation	Inference

To the first portion, $1 \mathrm{~cm}^{3}$ of soap solution was added	No lather formed	Water hard containing $\mathrm{Mg}^{2+} / \mathrm{Ca}^{2+}$ ions
The second portion was boiled, cooled and $1 \mathrm{~cm}^{3}$ of soap solution was added	No lather formed	Permanent hardness of water
To the third portion, $3 \mathrm{~cm}^{3}$ of aqueous sodium carbonate was added, the mixture filtered and $1 \mathrm{~cm}^{3}$ of soap solution added to the filtrate.	Lather formed immediately	$\mathrm{Na}_{2} \mathrm{CO}_{3}$ removed the hardness. Water was soft. $\mathrm{Mg}^{2+} / \mathrm{Ca}^{2+}$ absent. $\mathrm{Mg}^{2+} /$ Ca^{2+} are ppted out.

25. 2011 Q15 P1
(a) $\mathrm{Ca}(\mathrm{St})_{2}$ or $\mathrm{Mg}(\mathrm{St})_{2}$ ac $\mathrm{Ca}(\mathrm{St})_{2}$ or MgSt_{2}
(b) $\mathrm{Ca}^{2+}{ }_{(\text {aq) }}+\mathrm{Co}_{3}{ }^{2-}($ aq $) \longrightarrow \mathrm{CaCo}_{3(\mathrm{~s})}$

$$
\mathrm{Or} \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{Co}_{3}^{2-}{ }_{(\text {aq })} \longrightarrow \mathrm{MgCo}_{3(\mathrm{~s})}
$$

26. 2012 Q10 P1
(a) $\mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}$ or magnesium ions, calcium ions
[rej Mg or Na
(b) Mg^{2+} or Ca^{2+} ions are exchanged with Na^{+}ions in the resion

Or
Ions in hard water are exchanged with Na^{+}ions in the exchange resins or

$$
\begin{aligned}
& 2 \mathrm{R}-\mathrm{Na}+\mathrm{Ca}^{2+} \longrightarrow \mathrm{R}_{2}-\mathrm{Ca}+2 \mathrm{Na}^{+} \\
& 2 \mathrm{R}-\mathrm{Na}+\mathrm{Mg}^{2+} \longrightarrow \mathrm{R}_{2}-\mathrm{Mg}+2 \mathrm{Na}^{+}
\end{aligned}
$$

27. 2012 Q21 P1

- plastic bottles
- Packaging of materials, Ceiling boards
- Making crates
- Toothbrush handles
- Cups, plates
- Building materials
- Models dummies

28. 2012 Q2 P2

(a)

(b) Identify correct reagent $\sqrt{ }$ correct observation $\sqrt{ }$ (4 marks)

- Ethene - When bubbled through acidified Kmno_{4}, the Kmno_{4} is decolourised, while ethane does not decolourise.
- Ethene burns with smoky flame, while ethane does not burn with smoky flame.
(c) (i) concentrated sulphuric (vi) acid or $\mathrm{Al}_{2} \mathrm{O}_{3}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$
(1 mark) if sulphuric acid is written $1 / 2$ mark
(ii)

or

(iii) $2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{~s})} \longrightarrow 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}+\mathrm{CO}_{2(\mathrm{~g})}$ Ignore the states
(iv) $2 \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}+9 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O} \sqrt{ } 1$

Moles of $\mathrm{CO} 2={ }^{18} / 24=0.75$ moles $V 1 / 2$
Moles of propan $=\underline{0.75 \times 2}=0.25 \mathrm{moles} \sqrt{ } 1 / 2$
6
1 mole of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O} \longrightarrow 60 \mathrm{~g} \sqrt{1 / 2}$
0.25 moles \longrightarrow ?
$=15 \mathrm{~g} \sqrt{1 / 2}$

