KANDARA SUB-COUNTY FORM 3 JOINT EVALUATION

Kenya Certificate of Secondary Education

PHYSICS

Paper 1 October 2016

MARKING SCHEME

1. Reading =
$$6.45 \text{mm}$$

diameter = $6.45 - 0.14$
= $6.31 \text{mm} \checkmark$

2.
$$x = ut + \frac{1}{2}gt^2$$

= $0 + \frac{1}{2} \times 10 \times 4^2 \checkmark$
= $80m$

3.
$$\frac{V_1}{T_2} = \frac{V_2}{T_2}$$
 $V_2 = \frac{V_1}{T_1} \times T_2$
 $= \frac{200 \times 370}{300}$
 $= 246.67 \text{ cm}^3 \checkmark$

4.
$$V = \underline{m} = \underline{1.8} \\ 0 \times 10^2$$

mass =
$$\frac{1.8}{9 \times 10^2} \times 1000 \checkmark = 2 \text{kg} \checkmark$$

$$F_1 \times d_1 = F_2 d_2 \checkmark$$

 $2 \times 30 = W \times 10$
 $W = \underline{60} = 6.0 N \checkmark$

6.
$$A_1V_1 = A_2V_2$$

 $24 \times 9 = A_2 \times 6 \checkmark$
 $A_2 = 24 \times 9 = 36 \text{cm}^2 \checkmark$

- 7. a) Adhesive forces between water molecules and glass are stronger than cohesive force between water molecules ✓
 - b) Density reduces. This is because mass remains constant but volume increases ✓

8.
$$t = \frac{V}{A} = \frac{1 \times 10^{-6}}{3.14 \times 10^{-4}} \checkmark = 3.183 \times 10^{-3} \text{m} \checkmark$$

9. Black surfaces are better absorbers of heat than white / shiny hence white feels cooler ✓

10. W = ke
$$\checkmark$$

= 75 x 0.35 \checkmark
= 26.25N \checkmark

11.
$$P_{\text{max}} = \frac{\text{force } \checkmark}{\text{min area}} = \frac{6.0}{0.004} = 15000 \text{N/m}^2 \checkmark$$

12. - mercury is dense heavy ✓
- mercury does not stick on glass ✓

13. a) For a helical spring the extension is directly proportional to the force producing it provided that elastic limit is not exceeded ✓

b) i) let original length be = x

$$e = 13 - x$$
 and $e = 15 - x$
 $e = \frac{f}{k} = \frac{50}{50}$ and $\frac{80}{k}$
 $\therefore 13 - x = \frac{50}{k}$ and $15 - x = \frac{80}{k}$ both
 $15k - kx = 80$
 $13k - kx = 50$
 $2k = 30$
 $k = 15$

ii)
$$k = 15 \checkmark$$

 $x = 13 - \underline{50}$
 15
 $x = 9.667 \text{cm} \checkmark$

ii) T x
$$4.5 = 180 \times 2 \checkmark$$

T = $\frac{360}{4.5} \checkmark = 80 \text{N} \checkmark$

14. a) Temperature measured in Kelvin while heat is measured in Joules ✓

b) i)
$$P = 4^{\circ}C + 273 \checkmark$$

= 277K \checkmark accept $4^{\circ}C \checkmark\checkmark$

Correct shape with maximum at 4°C

iii)I. Heat supplied (Q) = P x t
=
$$300 \times 5 \times 60$$

= $90,000$ Joules \checkmark

II. Heat capacity =
$$\underbrace{(Pt)}_{\Delta\theta}$$
 = $\underbrace{90,000}_{40}$ \sqrt{ = 2250JK⁻¹

III.
$$2250 = MC \checkmark$$

$$M = \underbrace{2250}_{C} = \underbrace{2250}_{A200} \checkmark = 0.5357 \text{kg}$$

15. a) Friction ✓
Weight of lower block ✓

b) i) To change direction of effort
$$\checkmark$$

ii) I. V.R = 6 \checkmark
II. M.A = \underline{L} \checkmark
 \underline{E}
= $\underline{284}$ \checkmark
 71
= 4 \checkmark

III.
$$E = \underline{M.A} \times 100\% \checkmark$$

V.R
= $\frac{4}{6} \times 100$
= $66.67\% \checkmark$

- 16. a) Thermometer ✓

 Bunsen burner / heater ✓ (could be in the diagram)
 - b) To distribute heat equally / uniformly for uniform heating of air ✓
 - c) To measure the pressure of the air at various temperatures ✓
 - d) -273°C

e)
$$\underline{P_1 V_1} = \underline{P_2 V_2}$$

 T_1 T_2
 $\underline{1.5 \times 10^5 \times 1.6} = \underline{1.0 \times 10^5 V_2}$ \checkmark
285 273

$$V_2 = \underbrace{1.5 \times 10^5 \times 1.6 \times 273}_{285 \times 1.0 \times 10^5} \checkmark$$
$$= 2.299 \text{m}^3 \checkmark$$

17. a) Impulse equal change in momentum or force x time ✓

b) i) Impulse =
$$mv = mu$$

= 1000 x 0 - 1000 x 10 \checkmark
= -10,000kgm/s \checkmark

ii) Impulse = Ft

$$F = \frac{-10000}{0.4} \checkmark = -25,000 \text{N} \checkmark$$

c) i) When two or more bodies collide their total momentum remains a constant provided no external forces are acting ✓

ii) I.
$$m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2 \checkmark$$

 $5 \times 10 + 10 \times 4 = 5 \times 7 + 10V_2 \checkmark$
 $90 = 35 + 10V_2$
 $V_2 = 90 - 35 \checkmark$
 10
 $= 5.5 \text{m/s} \checkmark$

II. Elastic collision ✓