	Index No.
	Candidate's signature
> + €	DATE DONE
NYABURURU GIRLS' NATIONAL	INVIGILATOR
OUR LADY OF LOURDES	DATE RETURNED
	DATE REVISED.

PHYSICS

Nama

232/1-PAPER ONE

Time: 2 hours

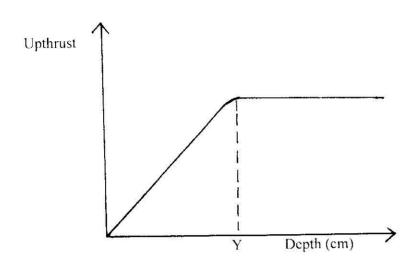
MARCH SERIES EXAMINATION-2016

Kenya Certificate of Secondary Education INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided above.
- Sign and write the date of the examination in the spaces provided above.
- This paper consists of two sections A and B.
- Answer ALL questions in section A and B in the spaces provided.
- All working must be clearly shown in the spaces provided in this booklet.
- Non-programmable, silent electronic calculators and KNEC mathematical tables may be used.

EXAMINER'S USE ONLY

SECTION	QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
Section A	1-11	25	
Section B	12	15	
	13	15	30
	14	13	
	15	12	
	TOTAL	80	


Na	ame Index No	
	SECTION A (25 MARKS) Answer <u>all</u> questions in the spaces provided.	
	The figure below shows part of a measuring cylinder containing a certain liquid	
۱.		**********
2.	What is the volume of the liquid in the measuring cylinder. (1m	
3.	and it all states of the contract of the contr	spreads iks)

4.		nced at a nks)

1.5kg

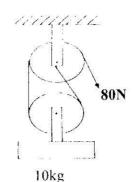
seconds. The figure	pelow shows the pattern of the drop on th		-
	1 · 2 · 3	• 4	
(i) Describe the	notion of the car.		(1mk)

	e acceleration of the car.	***************************************	(2mks)

A ball is thrown fro distance from the fo	m the top of a cliff 20m high with a horiz ot of the cliff to where the ball strikes the	ontal velocity of 10ms ⁻¹ . (e ground.	Calculate the (2mks)
distance from the fo	ot of the cliff to where the ball strikes the	ontal velocity of 10ms ⁻¹ . (e ground.	(2mks)
distance from the fo	ot of the cliff to where the ball strikes the	e ground.	(2mks)
distance from the fo	ot of the cliff to where the ball strikes the	e ground.	(2mks)
distance from the fo	ot of the cliff to where the ball strikes the	e ground.	(2mks)
The figure below is	a gas jar completely filled with water an	e ground.	(2mks)
(a) State the ob	a gas jar completely filled with water an	erted.	uze.

Name	 	It	ndex 1	۷o			
					10.10	~	

8. A glass block is suspended from a spring balance and held inside a beaker without touching the beaker. Water is added gradually into the beaker. The figure below shows the variation of the upthrust on the block with depth of water in the beaker.



State the reasons for the observation at Y	(2mks)
9. What force is needed to stop a 500kg car moving at 180km/h in 12.5 seconds?	(3mks)
10. A hole of diameter 1.0mm is made in the side of a water pipe. If the Pressure of the flow is	s maintained at
3.0 X 10 ⁶ Nm ⁻² , calculate the force with which the water jets out of the hole.	(3mks)
11. Explain why a glass container with thick glass walls is more likely to crack then one with when a very hot liquid is poured into them.	a thin wall (2mks)

Name Index No.	Name	. Index	No
----------------	------	---------	----

SECTION B 55 MARKS

12. (a) Using the pulley system shown a mass of 10kg is raised 2m by an effort of 80N.

(1mk) (i) How much potential energy does the load gain. (ii) How far does the effort end move in order to raise the load by 2m? (2mks)(iii) How much work is done by the effort (2mks) (iv) What is the efficiency of these pulleys? (v) If all the wasted energy is used to lift the bottom pulley, how much does the pulley weigh? (b) The figure below shows a wheel and axle being used to raise a load W by applying an effort E. the radius of the large wheel is R and that of small wheel is r as shown. (3mks) (i) Show that the velocity ratio (VR) of this machine is given by R/r

lame .									• • • • • • • • • • • • • • • • • • • •					In	dex No.			
i) Giv ne mad					nd R	= 8cr	n, d	eter	mine	the e	effort r	equire	d to ra	ise a loa	d of 20N	√ if the		iency 3mks)
	• • •							••••			******							
								••••										
s. (a)	A l	itre s vo	of ga	as at a	a tem its te	perati mper	ure (atur	of 0' e ris	°C an	d pre 273°	essure 'C. Cal	1.0 X lculate	10 ⁵ Nr the ne	n ⁻² is suc w press	ddenly c ure of th	ompres e gas.	ssed t	o half (3ml
	21()						(* * *) * (*				*****			erris de de la composición della composición del	(.*.9/ *.* .*.*.*.*	*** ***	,,,,,,,,	· · · · · · · · · · · · · · · · · · ·
	• • •						····							1.514.141.511.				
	•••																	
) Giv	e tr	wo :	diffe	rence	betw						ation.			DISAN DESER TUBE		(2m	986	
	52. 52	• • • • •						100										

	e	ca		eter.											of a liqui results			
		Tet	nper	ature				30	36	5	40	45	49	54	57			
			2353	min aph		npera	ture	3	4 inst t		5	6	7	8	9		1	5mks)
Ē						Till		H	11.7			HILL				Parti	TIT	
L. L.		-	- +			1						+				11111		
j .								++								H		
	12 15 1	:									1 1 1 5 7 1							
1: 13 1 - 1 1 - 1 1 - 1		LL_														7 1 1 1 1 1		
			HÌ										-					
[] [] []	11	j.,		hakainin ka												11		
- - - -						1-1				ļ <u>i</u>						† † ¬ † ¬ • • • • • • • • • • • • • • •		
 		3 1		to the same	0.111													
i i				inerlese 1 f. l. sa		1 1									Elli		klit	
- - 								إسباب				11111					art lat	
1. 1.			H															
-			-			1												H
irr Irr						1		1							بإداريا والتحدة			
I- L (1												
1	. 1					1						Him						illi

(II) The specific heat capacity of the liquid take: Specific heat Capacity of copper = 400Jkg ⁻³ k ⁻¹ (4m Mass of copper calorimeter = 100g (ii) A balloon made up of a fabric weighing 80N has a volume of 1x 10 ⁷ cm ⁻³ . The balloon is fill with hydrogen of density 0.09 Kgm ⁻³ . Calculate the greatest weight, in addition to that of the hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ⁻³ . (4m) (b) The diagram below shows the same metal block weighed in air.water and liquid X Ocm ⁻³ Ocm ⁻¹ Usate the law of floatation (Im Carry in air of average density 1.25kgm ⁻³). (4m)	(ii) A balloon made up of a fabric weighing 80N has a volume of 1x 10 ⁷ cm ³ . The balloon is filled with hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ³ . (4mks (iii) A balloon made up of a fabric weighing 80N has a volume of 1x 10 ⁷ cm ³ . The balloon is filled with hydrogen of density 0.09 Kgm ³ . Calculate the greatest weight, in addition to that of the hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ³ . (4mks (b) The diagram below shows the same metal block weighed in air, water and liquid X (b) The diagram below shows the same metal block weighed in air, water and liquid X (c) Liquid X		Index No
Specific heat Capacity of copper = 400Jkg ' k' (4m) Mass of copper calorimeter = 100g (ii) A balloon made up of a fabric weighing 80N has a volume of 1x 10 ⁷ cm ³ . The balloon is filled with hydrogen of density 0.09 Kgm ³ . Calculate the greatest weight, in addition to that of the hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ³ . (4m) (b) The diagram below shows the same metal block weighed in air, water and liquid X (b) The diagram below shows the same metal block weighed in air, water and liquid X (c) Cin ³ United Section 1. (4m) (b) The diagram below shows the same metal block weighed in air, water and liquid X	State the law of floatation (Imk (iii) A balloon made up of a fabric weighing 80N has a volume of 1x 10 ⁷ cm ³ . The balloon is filled with hydrogen of density 0.09 Kgm ⁻³ Calculate the greatest weight, in addition to that of the hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ⁻³ . (4mks (b) The diagram below shows the same metal block weighed in air,water and liquid X 0.7N 0.7N Liquid X		(1mk
Specific heat Capacity of copper = 400Jkg * k* (4m) Mass of copper calorimeter = 100g (ii) A balloon made up of a fabric weighing 80N has a volume of 1x 10 ⁷ cm ³ . The balloon is filled with hydrogen of density 0.09 Kgm ³ . Calculate the greatest weight, in addition to that of the hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ³ . (4m) (b) The diagram below shows the same metal block weighed in air, water and liquid X (b) The diagram below shows the same metal block weighed in air, water and liquid X (c) N (c) N (d) N (d) Liquid X	State the law of floatation (Imk (iii) A balloon made up of a fabric weighing 80N has a volume of 1x 10 ⁷ cm ³ . The balloon is filled with hydrogen of density 0.09 Kgm ⁻³ Calculate the greatest weight, in addition to that of the hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ⁻³ . (4mks (b) The diagram below shows the same metal block weighed in air,water and liquid X 0.7N 0.7N Liquid X		
Specific heat Capacity of copper = 400Jkg * k* (4m) Mass of copper calorimeter = 100g (ii) A balloon made up of a fabric weighing 80N has a volume of 1x 10 ⁷ cm ³ . The balloon is filled with hydrogen of density 0.09 Kgm ³ . Calculate the greatest weight, in addition to that of the hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ³ . (4m) (b) The diagram below shows the same metal block weighed in air, water and liquid X (b) The diagram below shows the same metal block weighed in air, water and liquid X (c) N (c) N (d) N (d) Liquid X	State the law of floatation (Imk (iii) A balloon made up of a fabric weighing 80N has a volume of 1x 10 ⁷ cm ³ . The balloon is filled with hydrogen of density 0.09 Kgm ⁻³ Calculate the greatest weight, in addition to that of the hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ⁻³ . (4mks (b) The diagram below shows the same metal block weighed in air,water and liquid X 0.7N 0.7N Liquid X		***************************************
(ii) A balloon made up of a fabric weighing 80N has a volume of 1x 10 ⁷ cm ³ . The balloon is fille with hydrogen of density 0.09 Kgm ⁻³ . Calculate the greatest weight, in addition to that of th hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ⁻³ . (4ml) (b) The diagram below shows the same metal block weighed in air,water and liquid X (5cm ⁻³) (65cm ⁻³) (1ml) (2ml) (3ml) (4ml)	(ii) A balloon made up of a fabric weighing 80N has a volume of 1x 10 ⁷ cm ³ . The balloon is filled with hydrogen of density 0.09 Kgm ³ . Calculate the greatest weight, in addition to that of the hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ³ . (4mks) (b) The diagram below shows the same metal block weighed in air, water and liquid X 0.7N 0.7N Liquid X	Specific .heat Capacity of copper = 400Jkg ⁻¹ k ⁻¹	(4mks
(ii) A balloon made up of a fabric weighing 80N has a volume of 1x 10 ⁷ cm ³ . The balloon is fills with hydrogen of density 0.09 Kgm ⁻³ . Calculate the greatest weight, in addition to that of th hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ⁻³ . (4ml) (b) The diagram below shows the same metal block weighed in air,water and liquid X (b) The diagram below shows the same metal block weighed in air,water and liquid X (b) The diagram below shows the same metal block weighed in air,water and liquid X	(ii) A balloon made up of a fabric weighing 80N has a volume of 1x 10 ⁷ cm ³ . The balloon is filled with hydrogen of density 0.09 Kgm ³ . Calculate the greatest weight, in addition to that of the hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ³ . (4mks) (b) The diagram below shows the same metal block weighed in air, water and liquid X 0.7N 0.7N Liquid X		
(ii) A balloon made up of a fabric weighing 80N has a volume of 1x 10 ⁷ cm ³ . The balloon is fills with hydrogen of density 0.09 Kgm ³ . Calculate the greatest weight, in addition to that of th hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ³ . (4ml) (b) The diagram below shows the same metal block weighed in air,water and liquid X 0.7N 0.72N Liquid X	(ii) A balloon made up of a fabric weighing 80N has a volume of 1x 10 ⁷ cm ³ . The balloon is filled with hydrogen of density 0.09 Kgm ³ . Calculate the greatest weight, in addition to that of the hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ³ . (4mks) (b) The diagram below shows the same metal block weighed in air, water and liquid X 0.7N 0.7N Liquid X		
(ii) A balloon made up of a fabric weighing 80N has a volume of 1x 10 ⁷ cm ³ . The balloon is fills with hydrogen of density 0.09 Kgm ³ . Calculate the greatest weight, in addition to that of th hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ³ . (4ml) (b) The diagram below shows the same metal block weighed in air,water and liquid X 0.7N 0.72N Liquid X	(ii) A balloon made up of a fabric weighing 80N has a volume of 1x 10 ⁷ cm ³ . The balloon is filled with hydrogen of density 0.09 Kgm ³ . Calculate the greatest weight, in addition to that of the hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ³ . (4mks) (b) The diagram below shows the same metal block weighed in air, water and liquid X 0.7N 0.7N Liquid X		
(ii) A balloon made up of a fabric weighing 80N has a volume of 1x 10 ⁷ cm ³ . The balloon is fills with hydrogen of density 0.09 Kgm ³ . Calculate the greatest weight, in addition to that of th hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ³ . (4ml) (b) The diagram below shows the same metal block weighed in air,water and liquid X 0.7N 0.72N Liquid X	(ii) A balloon made up of a fabric weighing 80N has a volume of 1x 10 ⁷ cm ³ . The balloon is filled with hydrogen of density 0.09 Kgm ³ . Calculate the greatest weight, in addition to that of the hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ³ . (4mks) (b) The diagram below shows the same metal block weighed in air, water and liquid X 0.7N 0.7N Liquid X		
(ii) A balloon made up of a fabric weighing 80N has a volume of 1x 10 ⁷ cm ³ . The balloon is fillt with hydrogen of density 0.09 Kgm ⁻³ . Calculate the greatest weight, in addition to that of the hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ⁻³ . (4ml) (b) The diagram below shows the same metal block weighed in air, water and liquid X 0.7N 0.72N Liquid X	(ii) A balloon made up of a fabric weighing 80N has a volume of 1x 10 ⁷ cm ³ . The balloon is filled with hydrogen of density 0.09 Kgm ³ . Calculate the greatest weight, in addition to that of the hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ³ . (4mks) (b) The diagram below shows the same metal block weighed in air water and liquid X 0.8N 0.7N Liquid X	State the law of floatation	(lmk)
with hydrogen of density 0.09 Kgm *Calculate the greatest weight, in addition to dual hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ⁻³ . (4ml) (b) The diagram below shows the same metal block weighed in air, water and liquid X 0.7N 0.7N Liquid X	with hydrogen of density 0.09 Kgm **Calculate the greatest weight, in addition to that hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm **. (4mks) (4mks) (b) The diagram below shows the same metal block weighed in air, water and liquid X 0.7N 0.7N Liquid X (2mks)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
with hydrogen of density 0.09 Kgm *Calculate the greatest weight, in addition to dual hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ⁻³ . (4ml) (b) The diagram below shows the same metal block weighed in air, water and liquid X 0.7N 0.7N Liquid X	with hydrogen of density 0.09 Kgm **Calculate the greatest weight, in addition to that hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm **. (4mks) (4mks) (b) The diagram below shows the same metal block weighed in air, water and liquid X 0.7N 0.7N Liquid X (2mks)		***************************************
with hydrogen of density 0.09 kgm "Calculate the greatest weight, in addition to dust hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm ³ . (4ml (b) The diagram below shows the same metal block weighed in air, water and liquid X 0.7N 0.7N Liquid X	with hydrogen of density 0.09 Kgm **Calculate the greatest weight, in addition to that hydrogen and its fabric which the balloon can carry in air of average density 1.25kgm **. (4mks) (4mks) (b) The diagram below shows the same metal block weighed in air, water and liquid X 0.7N 0.7N Liquid X (2mks)		
0.7N 0.72N 0.72N 65cm ³ - Liquid X	0.5cm ³ — Liquid X		
0.7N 0.72N 0.72N 65cm ³ – Liquid X	0.5cm ³ — Liquid X		
0.7N 0.72N 0.72N 65cm ³ – Liquid X	0.5cm ³ — Liquid X		
0.7N 0.72N 65cm ³ — Liquid X 0cm ³ — Vater	0.5cm ³ — Liquid X		
0.8N 65cm ³ Water Uniquid X	0.8N	(b) The diagram below shows the same metal block weighed in air, wa	ater and liquid X
Ocm3 - Water	Ocin ³ Water (2m)	0.8N	2N
	(i) Calculate the density of the metal. (3mk	Water	Liquid X
(i) Calculate the density of the metal. (3n		(i) Calculate the density of the metal.	(3mk

	Vo
(ii) Water level before the solid was immersed.	(2mks)
549 (MINOR) (M	
(ii) Density of the liquid X	(3mks)
(i) Differentiate between centripetal and centrifugal forces.	(1mk)
(ii) What provides the centrifugal force needed to make a car travel round road	in a bend of unbanked (1mk)
(b) Below is a diagram of an aircraft of mass 2000kg together with the pilot maneuvers in a vertical plane.	performing some air
$D = \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
$\mathbf{p}\left(\frac{\mathbf{r}=40\mathbf{m}}{\mathbf{r}}\right)$	ity of 200ms ⁻¹ . Calcula (3mks)
D = 40m A If the radius of the circular path is 40m and the aircraft is moving at a veloce	(3mks)
$D = \underbrace{\frac{r=40m}{F_2}}_{A} B$ If the radius of the circular path is 40m and the aircraft is moving at a veloc (i) The external force F_1 provided by the air at point C .	(3mks)
If the radius of the circular path is 40m and the aircraft is moving at a veloc (i) The external force F_1 provided by the air at point C .	(3mks)

·		Index No
(c) (i) Define dynamic lift	t.	(1mk)
(ii) A horizontal pipe of 5 cm at the other end velocity of water at	f radius 2.0cm. At one end, gradually increadd. Water is pumped into the smaller end at a	uses in size so that its radius velocity of 8.0ms ⁻¹ . Find th

© March series- 2016 physics department 9 Physics 232-1