Name	Index No
class	Candidate's signature
> + €	DATE DONE
NYABURURU GIRLS' NATIONAL SCHOOL	INVIGILATOR

DATE RETURNED.....

DATE REVISED.....

PHYSICS

232/2-PAPER TWO

OUR LADY OF LOURDES

Time: 2 hours

FEBRUARY SERIES EXAMINATION-2016

Kenya Certificate of Secondary Education INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided above.
- Sign and write the date of the examination in the spaces provided above.
- This paper consists of two sections A and B.
- Answer ALL questions in section A and B in the spaces provided.
- All working must be clearly shown in the spaces provided in this booklet.
- Non-programmable, silent electronic calculators and KNEC mathematical tables may be used.

EXAMINER'S USE ONLY

SECTION	QUESTION	MAXIMUM SCORE	CANDIDATES SCORE
A	1 – 14	25	
	15	14	
В	16	16	
	17	14	
	18	11	
TOTAL	SCORE	80	

SECTION I (25MARKS) Answer all questions in the spaces provided

1. (a) What is the name of the apparatus shown in the diagram below?

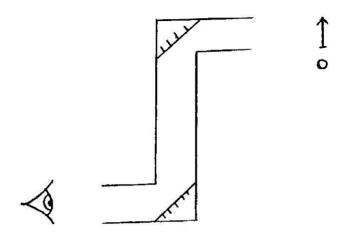


Figure 1
Name of instrument.....(1mk)

- (b) A student used the above apparatus to observe a concert in a crowded theatre. **Complete** the ray diagram to show to the final image position (1mk)
- 2. The diagram below shows a positively charged rod brought close to a candle flame. It is Observed that the flame split into two

Figure 2

	Explain this observation.	(2mks)
	g	*
3.	Explain briefly how heating demagnetizes a magnet	(1mk)

4.	Why is it possible to start the car engine with a 12v-lead -acid accumulator, but not with eight
	1.5V dry cells arranged in series (1mk)
5.	A conductor carrying current is placed in the magnetic field and moves in the direction shown
	Figure 3
	Indicate the polarity of the magnets in the diagram (1mk)
6.	The reading of the Ammeter in fig.4 below is 0.5A when the switch, S is closed.
	2Ω 2Ω 2.0 V
	Fig. 4 Determine the internal resistance of the cell (3mks)

7. The sketch graph in figure 5 (a) and (b) below represent the same wave.

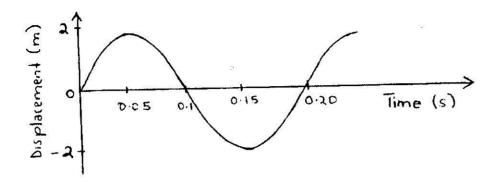
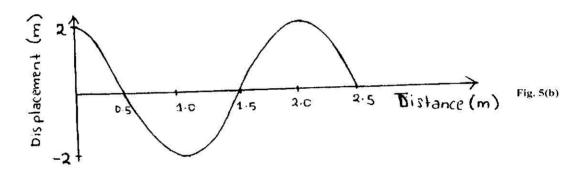



Fig. 5(a)

Determine the velocity of the wave	(3mks)

8. Fig.6 below shows an object, O placed in front of concave mirror and its image, I formed by the mirror. **Draw** rays to show the principal focus of the mirror. (2mks)

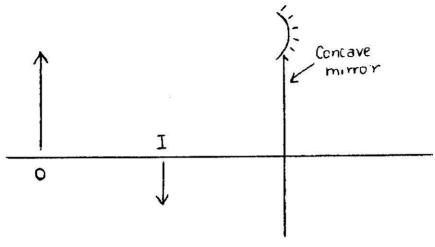


Figure 6

9.	Give a reason why flourescent tubes are preferred to filament bulbs for domestic	lighting.
		(1mk)

	h	
10	. Arrange the following electromagnetic radiations in order of increasing frequency	cy; infra - red
	Gamma rays, radiowaves, ultra-violets rays.	(lmk)

11. Calculate the apparent depth of an object, O in the fig. 7 below. (3mks)

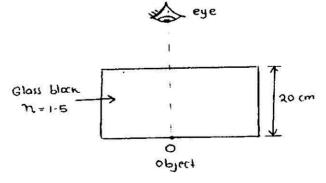


Figure 7

,	 ***************	

power :	s the max supply of		iber of 10	ow buids ti	nai can be		to a 3A fuse	(3mks)

**************************************				TOTAL PROPERTY AND A		**********	P. P. P. A. P. O. A. P. O. A. P. O. A.	ar en
What i	s meant l	by 'conseq	uent pole	s' as used	in magneti	sm?		(
							,,	
State tl	ne SI unit	t of power	of a lens					(
	,,,,,,,,,,					*****	**********	
*******	********		*****	*******				
			SEC	TION II	(55 MA	RKS)		
A stude	nt carrie	d out an ex	periment	to investig	ate how cu	ırrent varie:	s with poter	ntial differe
applied	d across a	a filament l	amp. The	following	readings w	vere obtaine	ed.	
d.(V)	0	0.20	0.40	0.60	0.80	1.20	1.60	2.40
(A)	0.0	0.11	0.20	0.28	0.34	0.43	0.50	0.58
(a) D ra	w a diag	ram for the	circuit us	sed to obta	in the valu	es.		(2mks
		riefly how	the experi	ment was	carried out	e on		(2
(b) D e	scribe o				********			*********

	(c) I	Plot a	graph	of V	agains	t I for	the va	alues p	resen	ted in	the ta	ble.				(5mks)
		7 T E E	[1 1				i i				
		0 B			6 2 8 0		.co		1		Ti ama			i i i		5 10 1
				5 8 5 22 5 5		 						nei I				
				1000 an	1 1 S	i 	-4:1		1 1 12 1 1 10 12 10			1 el 1 m				
i 				1 1 1 1		; ; ;		; 								
		1.16	3 00g 0 3 0000	5				granni Lae n na				B B B300 6 550 6 680				0 B B
			: • *** ** [[i i i i i i i i i i i i i i i i i i i	9 K B						1000 to				
														20 1 A		
				 					11111	TITT		52723				ليديد
	(d) Determine the resistance of the lamp when a current of 0.4A flows through it. (3mks)							(3mks)								
											•••••					
										.,						
	SERVER EX	•••••														
	*****			• • • • • • • •						,,,,,,,						
	(e) F	Explai	n why	a fila	ment	lamp (does n	ot obe	y Ohr	n's la	w,	••••	****		*/***********	(2mks)
		*****									******		******			

16. (a) Define the term principal focus in relation to a thin convex lens	(2mks)
313311131111111111111111111111111111111	*********
5.0.00000000000000000000000000000000000	
(b) Distinguish between a real and a virtual image.	(2mks)
· · · · · · · · · · · · · · · · · · ·	

(c) The diagram below shows an arrangement of lenses. Lo and Le used in a con	

(c) The diagram below shows an arrangement of lenses, L_o and L_e used in a compound microscope F_o and F_e are principal foci of L_o and L_e respectively.

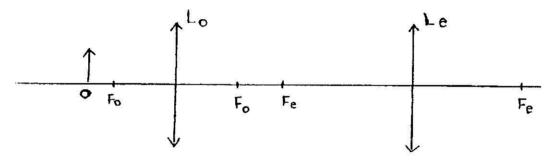
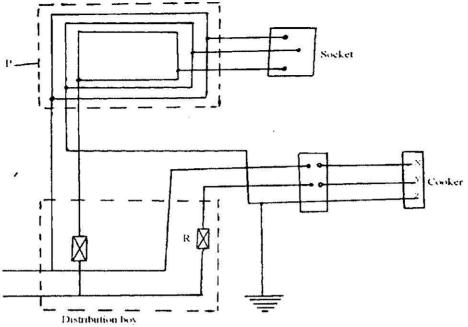



Figure 8

Draw the rays to show how the final image is formed in the microscope

(3mks)

(d) Figure 9 shows a section of a house wire system.

	Distribution box	
i)	Name: The circuit labeled P	(1 mark)
	The terminals labeled X, Y and Z	(3 marks)
	X	
	Υ	
	Z	
ii)	I State the purpose of R in the circuit.	(1 marks)
	II) Give a reason why R is connected to Y but not to X.	
iii)	Why is the earthing necessary in such a circuit?	(1 mark)
Dete	rmine the cost of using an electric iron rated 1500W, for a total	of 30 hours given
that t	the cost of electricity per kwh is Ksh.8	(2 marks)
		resona avota antos ambreresonas ambreta

17. (a) Figure 10 shows a transmitter producing both TV and radio waves.

	Hill
(i)	Which wave can be detected by a receiver in the home at the foot of the mountain? Explain your answer. (2mks)

	Give an expression for the energy E of the TV signals if their wavelength is λ (Take speed of light in a vacuum and Planck's constant to be a and b respectively).
	light in a vacuum and Planck's constant to be c and h respectively) (2mks)

	(c) A Hydro-electrical power station produces 500KW at a voltage of 10 KV. The voltage is then Stepped up to 150 KV and the power is transmitted through cables of resistance 200Ω to a step down transformer in a sub station. Assuming that both transformers are 100%
	efficient.
Cal	culate:
	(i) The current produced by the generators. (2mks)
	(ii) The current that flows through the transmission cables. (2mks)
	5.55.65.0

	(iii) The	e voltage drop across the transmission cables	(2mks		
		· · · · · · · · · · · · · · · · · · ·			
*****		»········			
20.00		e power loss during transmission	(2mks)		
		•••••••••••••••••••••••••••••••••••••••	****************		

9	(v) The	power that reaches the sub-station	(2mks		
****	*****				
18. a) St	tate fw o	factors that determine capacitance of a parallel plate capacitor.	(2mks)		
20. 4) 5.			(2mks)		
	5555				
b)	Three capacitors of capacitance $100\mu F$, $500\mu F$ and $400\mu F$ are connected together in a				
	circu	ıit.			
	Drav	Draw a circuit diagram to show the arrangement of the capacitors which gives			
	i)	The effective capacitance of $250\mu F$	(2mks)		
	ii)	Maximum capacitance	(2mks)		

c) Figure 11 shows a circuit where a battery of e.m.f 6V, a voltmeter, switches X and Y, two capacitors of capacitance $2\mu F$ and $4\mu F$ are connected.

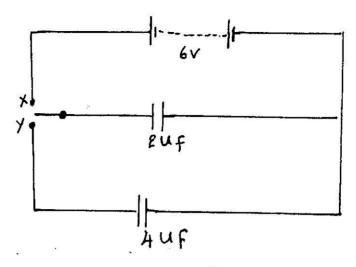


Fig. 11

i)	Determine the charge stored in the $2\mu F$ capacitor when switch X is closed and switch Y is		
open.		(2mks)	

ii)	When the switch Y is finally closed and switch X is open, determine the potential	difference	
across	each capacitor	(3mks)	