## 3.6.2 Physics Paper 2 (232/2)

## SECTION A (25 marks)

Answer all the questions in this section in the spaces provided.

- State the observation made on the image in a pin hole camera when the distance between the object and the pin hole is reduced. (2 marks)
- 2. Figure 1 shows a gold leaf electroscope.



Figure 1

(a) Name the part labelled A.

(1 mark)

(b) State the function of the part labelled B.

- (1 mark)
- 3. State **two** measurements that should be taken for one to decide whether a lead acid accumulator is due for charging. (2 marks)
- 4. Explain what happens to the speed of a water wave as it moves from the shallow to the deep end in a ripple tank. (2 marks)
- 5. The critical angle for a ray travelling from glass to air is 42° Determine the refractive index of the glass. (3 marks)

Figures 2(a) and 2(b) show two circuit diagrams with identical lamps and identical cells. B Figure 2(b) Figure 2(a) (2 marks) State with a reason which of the bulbs will be brighter. Figure 3 shows an annular ring. 7. Figure 3 On the diagram, sketch the distribution of the charge on the ring, when the ring is negatively (1 mark) charged. When iron filings are sprinkled onto a bar magnet, it is observed that there are more iron filings 8. at the ends than in the middle. Explain this observation. (2 marks) (2 marks) Draw a diagram to show a p-n junction connected in the reverse bias mode. 9. A broadcasting station produces radio waves of wavelength 800 m. Determine their frequency. 10. (2 marks) (speed of air is  $3 \times 10^8 \,\mathrm{ms}^{-1}$ ) (2 marks) Explain how x-rays are produced in the x-ray tube.

State the purpose of a fuse in an electrical circuit.

(1 mark)

11.

13. Figure 4 shows circular water waves incident on a plane reflector placed at an angle to the path of the waves.



Figure 4

Complete the diagram to show the reflected waves.

(2 marks)

## SECTION B (55 marks)

Answer all the questions in this section in the spaces provided.

- 14. (a) State two ways of minimising power losses during the transmission of electric power. (1 mark)
  - (b) An electric cooker is rated 2.5 kW, 250 V. State the meaning of these values. (1 mark)
  - (c) A consumer has the following appliances in the house:
    - An electric iron rated 1500 W
    - A water heater rated 500 W
    - An electric cooker rated 2500 W
    - Three bulbs each rated 60 W.

The house is fitted with a 12 A fuse. Determine:

- (i) whether the consumer can connect all the appliances to the 240 V power supply at the same time; (4 marks)
- (ii) the resistance of the heating element used in the electric cooker. (3 marks)
- 15. (a) Describe how the focal length of a concave mirror can be determined using a screen and a metre rule. (1 mark)
  - (b) An object is placed 8 cm from a concave mirror whose radius of curvature is 20 cm.

    Determine the position of the image. (3 marks)

- (c) An object of height 10 cm is placed 30 cm from a converging lens of focal length 18 cm.
  - (i) On the grid provided, draw a ray diagram to locate the position of the image formed. (3 marks)



- (ii) From the diagram in part (i), determine the:
  - I. image height; (2 marks)
  - II. image distance. (2 marks)

16. (a) State two uses of radioactivity in medicine.

(1 mark)

(b) The following is a nuclear reaction equation:  ${}_{3}^{6}\text{Li} + {}_{0}^{1}\text{n} \rightarrow {}_{1}^{3}\text{H} + {}_{v}^{x}\text{P}$ 

Determine the values of x and y.

(2 marks)

(c) Figure 5 shows a radioactive element placed in an evacuated glass chamber. The element produces alpha, beta and gamma emissions.



Figure 5

The three emissions pass through an electric field.

(i) Complete the diagram to show the path of each of the emissions.

(3 marks)

- (ii) State the reason why:
  - the radioactive element is kept inside a lead box;

(1 mark)

II. the chamber is evacuated.

(1 mark)

(d) (i) Arrange the following electromagnetic waves in the order of decreasing frequency:

Microwaves; Gamma rays; Radiowaves; X-rays.

(1 mark)

(ii) The half life of a certain radioactive substance is 24 days. Given that the initial sample of the substance has a mass of 64 g, determine the mass which is left after 72 days. (2 marks)

- 17. (a) (i) Name the **three** components of the electron gun in a cathode ray tube. (3 marks)
  - (ii) State **one** difference between the deflection systems of a cathode ray tube and the television tube. (1 mark)
  - (b) Figure 6 shows a graph of stopping potential against the frequency for a certain photo emissive surface, drawn by a student from the data collected when carrying out an experiment on photoelectric effect.



Figure 6

From the graph, determine the:

- (i) threshold frequency of the surface; (3 marks)
- (ii) plank's constant  $\mathbf{h}$ , given that the energy of the incident photon is  $1.6 \times 10^{-19} \,\mathrm{J}$ ; (3 marks)
- (iii) work function of the surface. (3 marks)

18. (a) Figure 7 shows a soft iron ring placed between the poles of two bar magnets.



Figure 7

On the figure, draw the magnetic field lines between the poles.

(2 marks)

(b) Figure 8 shows two straight conductors P and Q connected to a battery and a variable resistor.



Figure 8

- (i) Using arrows, indicate on the diagram the direction of current that flows through P and Q when the switch is closed. (1 mark)
- (ii) State what is observed as the current flows through the conductors. (1 mark)
- (iii) Explain the observation in (ii). (3 marks)
- (c) (i) State how eddy currents are minimised in a transformer. (1 mark)
  - (ii) A step down transformer has 600 turns in the primary coil. The input voltage is 120 V while the output voltage is 24 V. Determine the number of turns in the secondary coil. (3 marks)