3.6.3 Physics Paper 3 (232/3)

Question 1

You are provided with the following:

- two cells in a cell holder;
- a switch;
- a micrometer screw gauge;
- a nichrome wire mounted on a millimetre scale;
- a voltmeter;
- an ammeter;
- a jockey;
- connecting wires with crocodile clips.

Proceed as follows:

(a) Using the micrometer screw gauge, measure and record the diameter d of the wire.

(1 mark)

(b) Set up the apparatus as shown in Figure 1.

Figure 1

(c) Using the voltmeter, measure the potential difference E across the battery before closing the switch.

E = volts.

(1 mark)

- (d) Adjust the length L of the wire to 0.1 m (10 cm). Close the switch, read and record the value of the current I in Table 1.
- (e) Repeat (d) for the other values of L given in Table 1. Complete the table. (6 marks)

Table 1

0.6	0.7
W TOWN	dan i
	110 (1)

- (f) On the grid provided; plot the graph of $\frac{1}{I}$ (y axis) against L. (5 marks)
- (g) From the graph, determine the:
 - (i) gradient S; (3 marks)
 - (ii) intercept C on the $\frac{1}{I}$ axis. (1 mark)
- (h) Given that:
 - (i) $\frac{4K_1}{\pi d^2 E} = S$ determine the value of K_1 . (2 marks)
 - (ii) $\frac{K_2}{E} = C$ determine the value of K_2 . (1 mark)

Question 2

You are provided with the following:

- a metre rule;
- a biconvex lens;
- a source of light (bulb in a bulb holder, cells in a cell holder and a switch);
 - a stand boss and clamp;
 - a lens holder;
- a screen;
 - a half metre rule;
 - three pieces of plastic pipes A, B and C;
 - a vernier callipers (to be shared);
 - a stopwatch;
 - some plasticine.

Proceed as follows

PART A

(a) Clamp the bulb holder onto the stand. Arrange the bulb, the lens and the screen along the metre rule as shown in Figure 2.

Figure 2

- (b) Adjust the distance of the bulb from the lens to U = 25 cm. Put on the switch and adjust the position of the screen from the lens so that a sharp image of the bulb is observed. Record the distance V between the screen and the lens in **Table 2**.
- (c) Repeat part (b) for the other values of U shown in Table 2. Complete the table. (7 marks)

Table 2

U cm	25	30	35
V cm	(a) E ym	eri -	
$M = \frac{V}{U}$	od si mát dan Jegigan	the pipe so	time state con to salutation to
$F = \frac{V}{M+1}$			

(d) Determine the average value of F.

(2 marks)

PART B

(e) Using the vernier callipers measure and record the diameters of the three pipes.

 d_A, d_B and d_C

$$d_A = \dots m$$
 (1 mark)

$$d_B = \dots$$
 m (1 mark)

$$d_C = \dots m$$
 (1 mark)

(f) Measure and record the thickness X of the half metre rule.

$$X = \dots m$$
 (1 mark)

(g) Place the pipe marked A on the bench and use the plasticine to stop it from rolling. (see Figure 3 (a)).

Figure 3 (a)

(h) Place the half metre rule onto the pipe such that it balances horizontally. Ensure that the half metre rule is perpendicular to the axis of the pipe. (see Figure 3 (b)).

Figure 3 (b)

- Push one end of the balanced half metre rule slightly downwards and release it so that it oscillates up and down. Measure and record in **Table 3** the time for five complete oscillations.
- (j) Repeat the procedure in (g), (h) and (i) for the other pipes B and C. Complete Table 3.

(5 marks)

Table 3

D. Limes	Pipe A	Pipe B	Pipe C
Diameter d (m)	er the questions that	ere I and then ange	Study the scrup in Figu
Time for five oscillations	- 3	B. M	
Periodic time T (s)			
122	5 1001-0		
$Z = T \sqrt{\frac{3(d-x)}{2}}$	a pilos par	000	
	Jacken (Up 12 Page	NAME OF THE PROPERTY.	O'UN CONTROL

(k) Determine the average value of	e value of \angle .	average	the	Determine	(k)
------------------------------------	-----------------------	---------	-----	-----------	-----

(2 marks)