NI I N KE		
NAME	ST	ADM/NO
O BE BOATET DEDING THE PARTITUDE THE PARTITUDE TO A SECOND TO THE PARTITUDE AND A SECOND AND A SECOND ASSESSMENT AND A SECOND ASSESSMENT AND A SECOND ASSESSMENT AND A SECOND ASSESSMENT AS		1 XIDIVI/ 1 Y ()

FORM THREE PHYSICS PHYSICS CAT 1 TERM 2 2016 TIME: 2 HOURS

Date done			21685
Invigilator		0.000	
Date returned			
Date revised	- 12 0	1984 - 19	Corner Will

Instructions:

- Write your name, class and class number in the spaces provided above.
- This paper consists of two sections: Section A and B.
- Answer all questions in sections A and B in the spaces provided.
- All working must be clearly shown on the spaces provided.
- Non-programmable silent calculators may be used.

FOR EXAMINER'S USE ONLY

SECTION	QUESTION	MAX. SCORE	CANDIDATE'S SCORE
A	1 - 9	25	
	10	13	
В	11	13	
	12	9	
	13	11	dn1 6.780
	14	9	
	TOTAL SCORE	80	

NAM	EST ADM/NO	
	SECTION I (25 MARKS)	
1.	(a) Name the instrument that would be used to measure the thickness of this ques paper. Give a reason for your answer.	stion (2mks)
	(b) What is the reading on the varnier caliper shown in figure 1?	
	0 1 2	
2.	Name one defect of a simple cell.	(1mk)
3.	Explain how an electroscope can be used to distinguish between an insulator and conductor.	a (2mks)
4.	Explain the following:-	
(a) Ale	cohol thermometers are preferred by aratic explorers.	(lmk)
b) In	a clinical thermometer, the bulb is not quite full of mercury at room temperature.	*******
5.	(a) Give two reasons why bulbs in a lighting circuit at home are connected in paranot in series.	allel and (2mks)

	arrent of 40mA passes through a lamp for 16 seconds, cat flows in the circuit at any given point.	calculate the quantity of (3mk
••••••••••••••••••••••••••••••••••••••		
6. The figure	shows an experimental set up used to illustrate the behavio	ur of white light.
	Olavs prism	
(i) State the b	est term that describes the above observations.	(1mk)
(ii) State the re	eason for the observation in (i) above.	(lmk)
***************************************		(1mk)
***************************************	eason for the observation in (i) above. e colours X and Y.	(1mk (2mk
(iii) Identify th 7. The mass respective		(2mk found to be M_L and M_V
(iii) Identify th 7. The mass respective	e colours X and Y. es of equal volumes of a certain liquid and water were ely. Given that the density of water is 1 g/cm³, express	found to be M_L and M_V the density of the liqui (3mk

NAME	ST	ADM/NO
8. State Newton's second law of motion.		(1mk)
	••••••	
9. (a) State two laws of refraction of light.		(2mks)
6 · · · · · · · · · · · · · · · · · · ·		

(b) Figure 2 below shows a horizontal tube with tw through the horizontal tube from right to left. The		be X is higher than
water level in tube Y. Explain this observation.		(2mks)
	Y	
Figure 2	9	

	OТ	ADMINIO
NAME		ADM/NO

SECTION B (55MARKS)

10. (a) Figure 3 shows a velocity-time graph for the motion of a certain body.

Describe the motion of the body in the region;
(i) OA

(ii) AB

(iii) BC

(b) A car moving initially at 10ms⁻¹ decelerates at 2.5ms⁻².
(i) Determine:

I. Its velocity after 1.5s

(2mks)

NAME					ST		ADM/NO	
	III.	The time to	iken for the	car to stop				(2mks)
AT CARACAS CLAS			**********					
(ii)	Sketch	the velocity	y-time grapł	n for the ca	r up to the	time the	car stopped.	(2mks)
(iii)	From	the graph, de	etermine the	distance th	ne car trav	elled befo	ore stopping.	(2mks)

5 W. 1871 17.		**********						
11. (a) De	fine the	refractive in	ndex of a su	bstance.				(1mk)
************	*********	**************		,.,				
in pi	to a mea n was u	nsuring cylingsed to locate	ider. A pin the apparer	was placed nt position	at the bot of the first	tom of the	ne liquid was e cylinder ar e real and app e values of re	nd another parent

The table below shows the results obtained.

ADW/W	NAME	ST	ADM/NO
-------	------	----	--------

Real depth (cm)	5	10	15	20	25
Apparent depth (cm)	3.3	6.7	10	13.3	16.7

(i) Plot the graph of real against apparent depth.

(5mks)

	(ii)	From the graph determine the refractive index of the liquid.	(4mks)
totaner te			****
und bestebe			

Given that the refractive index of the glass is 1.6, determine angle θ (3mks)

12. (a) Figure 5 shows a lorry towing a trailer using a rope.

Figure 5

(b) The lorry exerts a force N on the trailer and the trailer exerts an equal but opposite force M on the Lorry. The frictional force between the trailer and the road is Explain how the forces N, M and F enable the trailer to move. (2mks)

NAME	ST	ADM/NO
------	----	--------

(c) Figure 6 shows a frictionless trolley of mass 2kg moving with uniform velocity towards a wall. At the front of the trolley is a spring whose spring constant is 25Nm⁻¹. The trolley comes to rest momentarily after compressing the spring by 3cm and then rebounds from the wall.

Figure 6

-							
1	10	0	rr	n	117	10	٠_

I. The force exerted on the wall by the spring.	(3mks)
II. The maximum acceleration of the trolley as it rebounds from the wall.	(2mks)

(ii) State the reason why the trolley acquires a constant velocity after it rebounds.	

NAME	STADM/NO	
	What is the difference between longitudinal and transverse waves?	(2mks)
transmitted.	distinctions between the way sound waves and electromagnetic waves are	
(iii) Calcula Mega Hertz.	ate the wavelength of the KBC FM radio wave transmitted at a frequency of	100 (3mks)
(b) A mine w X distance ap	vorker stands between two vertical cliffs 400m from the nearest cliff. The coart. Every time he strikes the rock once, he hears two echoes; the first one the second follows 2s later. From this information calculate:	liffs are
(i)	The speed of the sound in air.	(2mks)

NAME		ST	ΛDM/NO
14. (a) Determin	e geometrically the centre of grav	vity of the figure below	w. (1mk)
	efficiency of a machine.		(1mk)
344111444 (A.) (2141444444444)			
	drum of mass 90kg being rolled is 420N and the distance moved l	5000 1-20	
Drum	F F		
_	25°		
Determine:			
(i) The v	vork done by the effort.		(2mks)

232322 (0.2424.2424.4444.4444.444	***************************************		

NAME	ST	ADM/NO
(ii)	Word done in raising the drum.	(3mks)

(iii)	The efficiency of the inclined plane as a machine.	(2mks)

This is the last printed page