NAME	CLASS	C/NO	ADM/NO	INDEV/NO
***************************************	CLAJJ	. C/ IVO	ADIVI/NO	INDEX/NO

232/2 FORM THREE PHYSICS PAPER 2 2016 MARCH SERIES, 2 HOURS

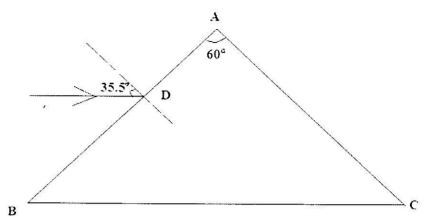
Candidate's signature.....

NYABURURU GIRLS'SCHOOL MARCH SERIES EXAMINATION

Date done		
Invigilator	1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
Date returned		_
Date revised		_

Instructions to Candidates

- (a) Write your name, class and class number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) This paper consists of TWO sections: A and B.
- (d) Answer all the questions in both sections A and B in the spaces provided.
- (e) All working MUST be clearly shown.
- (f) Non-programmable silent electronic calculators may be used.
- (g) This paper consists of 12 printed pages.
- (h) Candidates should check the question paper to ensure that all pages are printed as indicated and no questions are missing.
- (i) Candidates should answer questions in English.


FOR EXAMINER'S USE ONLY

Section	Question Number	Maximum score	Candidate's Score
A	1 -12	25	
	13	07	
	14	08	
	15	11	
	16	07	
	17	11	,
	18	11	
	Total	80	

NAM	1ECLASSC/NOADM/NO	INDEX/NO
	SECTION A (25MKS)	
1) (Give two illustrations that shows light is propagated linearly.	(2mks)

	Distinguish potential difference from electromotive force.	(2mks)
		3

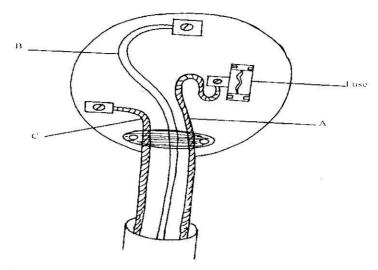
	,	**********
	A ball of radius 7cm rolls on a level ground a distance on 70m in 2 seconds	. determine
	the periodic time of the rolling ball.	(3mks)
8		
82 - 88		
e.		
65 18		renevery contra
4) t	Using domain theory explain the meaning of magnetic saturation.	(2mks)
.,		
5) 5	State two applications of parabolic reflectors.	(2mks)
į		**************
6) (Give a reason why a U-shaped core makes a stronger electromagnet than a	straight core. (1mk)
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

NAME	CLASSC,	/NOADM/NO	INDEX/NO
13) a) state Snell's law			
b) Using a diagram, explain why the	sun is seen above t	the horizon before it ris	es (2mks)

(c) The refractive index of glass is $\frac{3}{2}$ of glass with respect to water.			
•••••••••••••••••••••••••••••••••••••••			
			• • • • • • • • • • • • • • • • • • • •
The second secon			

d) The figure below shows a ray of light incident at an angle of 35.5° at point D on the first face of a glass prism ABC. The refractive index of the prism is 1.6. Draw the ray diagram until the ray gets out of the prism. (2mks)

14) a) What is "Background count" in relation to radio activity. (1mk)b)Radon nuclide $\frac{222}{86}$ Ra decays to form polonium(Po) by emitting an alpha-particle. Use a suitable equation to show this decay. (2mks)


c) A source of beta radiation is held near a GM tube which is connected to a ratemeter. The table below shows how the count-rate recorded by the ratemeter varies with time.

Time(minutes)	0	5	10	15	20
Count-rate(counts per second)	1660	1100	750	510	350
Actual count-rate per second	1				

NAME	CLASSC/NO	.ADM/NOIN	IDEX/NO	
If the count-rate due to background life of the source by plotting a graph	radiation is 6000 count on the graph paper pr	s per minute, find ovided.	the half- (5 mks)	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
15) (a) What is meant by threshold wavelength? (1 mk)				

(b)Explain how intensity of radiation incid emitted.	ent on a metal surface	affects the photoe	electrons (1 mk)	

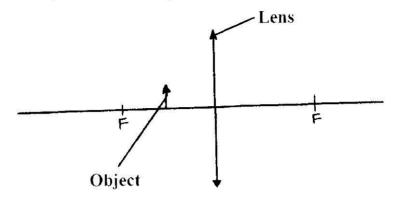
		**********	CLERKE CERE	

**		(2 11112)

H)	Work function	(2 mks)
	T9745786751 40 105 107 10	

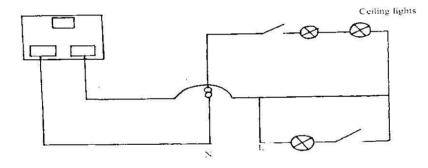
NAME.	CLASSC/NOADM/NOINDEX/NO
	State one similarity between a concave lens and a convex mirror. (1mk)
eren era	
b)	A lens forms a focused image on a screen when the distance between the object and
the len	is is 100cm. The size of the image is twice that of the object.
i) State	e with reason the type of lens used (2mks)
	ermine the distance of the image from the lens. (2mks)
• • • • • • •	

i) State the colour of the leads labelled A, B and C.	(3mks)
A	
В	HERE INCOME
C	
ii) Explain why is the earth pin normally longer than the two pins.	(lmk)
iii) State the function of the form	(1mk)
d) The power company supplied electrical energy and charges the consump	


• A monthly fixed charge of Ksh. 75

ordinary domestic wiring as follows;

- Ksh. 1.55 per unit for the first 50 units consumed.
- Ksh. 6.65 per unit for the next 51-300 units
- 1 unit = 1kilowatt- hour (kwh)


NAME	CLASS	c/NO	ADM/NO	INDEX/NO
A consumer uses 1.98 x 10 ⁵ kilojoules of e	electrical e	nergy in a	given month.	Determine the
total month bill.				(3mks)
			********	·· (10 (10 (10 (10 (10 (10 (10 (10 (10 (10
÷			******	************
***************************************				*******

	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***********		
18) a) State Lenz's law of electromagnetic i	induction.			(1mk)
***************************************			*********	

b) The diagram below is a simplified	A illustrati	on of an a		
of the diagram below is a simplified	u mustrati	on or an e.	m.i generator	•
100	7		-/	
	// .	/ //		
		/{		
		<		
x_ Ø)m=	>		
(Ba	5	714		
in the second				
Name the sea Liberta				
i) Name the part labelled A.				(1mk)
			** ***********	** ** * ** * * * * * * * * * * * * * * *

ii) Show the direction of induced e.n	n f when t	he coil is i	a the position	chawn in the
diagram.	statell to	von in i	i ine position	(lmk)
iii) State two ways of increasing the	amount of	finduced e	.m.f in this se	& 5

c) The figure shows an object placed between F and the lens of a convex lens. Use ray diagrams to locate the position of the image. (2mks)

17) a) Give one advantage of transmitting mains electricity as a.c and not d.c. (1mk)

b) The figure below shows part of a wiring circuit for a house.

Identify two faults in the wiring. (2mks)

NAMECLASSC/NOADM/NO	INDEX/NO
c) Give a reason why the output from this generator can not be used to cl	harge a
battery.	(1mk)
• • • • • • • • • • • • • • • • • • • •	******
d) State and explain any two ways by which energy losses are minimized	l in a
transformer.	(2mks)

***************************************	************

POLICE DE LES	PERSONAL RESIDENCE
e) A person has a 6v bell. He hopes to operate the bell from a 240v a.c m	ains supply.
with the help of the transformer shown in the figure.	FF-3,
output	
240 v 🔾 👸 🖁	
a.c input	
secondary coil 250	tums
Calculate the output voltage of the transformer when connected to the 240v ma	ine (3mke)
2.00.00.00.00.00.00.00.00.00.00.00.00.00	
······	