Name:	MARKING	SCHEME	Index No
	,		Adm. No
Sign		Date:	•••••

233/1 CHEMISTRY PAPER 1 JULY 2018 TIME: 2 HOURS

MOKASA JOINT EVALUATION EXAMINATION

Kenya Certificate of Secondary Education (K.C.S.E.)

INSTRUCTIONS TO THE CANDIDATES:-

- Write you name and index number in the spaces provided.
- Answer *all* the questions in the spaces provided.
- Mathematical tables and electronic calculators may be used
- All working MUST be clearly shown where necessary.

For Examiner's Use Only

Question	Maximum score	Candidate's score
1-29	80	
		appearance and an area of the

This paper consists of 10 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing

1.	Draw and label the flame produced when the air-hole of the Bunsen burner is fully closed	(2mks)
	Bright yellow zone Almost wolourlay zone Blue zone	gne
2.	a) Using dots(•) and crosses(x), show bonding in:i. Carbon (II) oxide	(1 mk)
		(1 IIIK)
	ii. Ammonia molecule	(1 mk)
	b) Ammonia molecule can form a dative bond with hydrogen ion. Explain. Ammonia has a lone (unchased) pair of elect	(1 mk)
	Which forms a dative with Lydrigen ion	
3.	a) Explain the trend in the physical state down group VII elements.	(2 mks)
	Physical state changes from ga to vigoid to This is due to increase in the intermolec- forces of attraction due to increase in man	olar
	b) State one use of halogens Chlorine is used in making blanches used in paper Florine is used to make ITE a synthetic fibile.	(lmk)
4.	Copper (II) chloride crystals were subjected to heat until it is molten. Electrolysis was then c	arried
	a) State the observations made at the anode	(1mk)
	Greenith-yellow func are seen.	()
5	b) Write the half equation at the cathoda	(1mk)
) MOK	ASA 2018 Form Four 2	

	the second secon			
	or in the	should be prepared	d in a fume c	chamber
	b) Give two exar	uples of poisonous gases mentioned in	n (a) above.	(1mk)
	Chlorin	Le Fluorine Bomine I	odere carbon (1)	oxide,
		202 or 503 are		
6.		a greenhouse gas. It is given a greenh		
	green house factor tha	at compares their effect with carbon (I	V) oxide. The green house effective	et
		r value increases. The table below give		
	gases.			
	Gas	Green house factor	% of the gas in the	
	4.6 0		atmosphere	
	CO ₂	1	0.036	
	CH ₄	30	0.0017	
	N ₂ O	160	3.0×10^{-4}	
	CCI ₃ F	21000	2.8×10^{-8}	
	b) Give one source	e of methane.	I global Marmine	(1 mk)
	b) Give one source		Tilken burd in the second	(1 mk)
	b) Give one source	e of methane.		(1 mk)
	b) Give one source Dishile c) Why is an increase increase carbon (se in percentage of methane more wor	rrying than the same percentage	(1 mk) of (1 mk)
	b) Give one source Dishile c) Why is an increase increase carbon (se in percentage of methane more workiv) oxide. The is easily flow	rrying than the same percentage	(1 mk) of (1 mk)
	b) Give one source Dishile c) Why is an increase increase carbon (se in percentage of methane more workiv) oxide. The is easily flow	rrying than the same percentage	(1 mk) of (1 mk)
7. (a)	b) Give one source Dishile c) Why is an increase increase carbon (Metha (19) State the Lechatelier	se in percentage of methane more working is easily flow oxide. "Sprinciple."	rrying than the same percentage	(1 mk) of (1 mk) (1 mk) (1 mk)
7. (a)	b) Give one source Dishile c) Why is an increase increase carbon (Metha (19) State the Lechatelier	se in percentage of methane more working is easily flow oxide. "Sprinciple."	rrying than the same percentage	(1 mk) of (1 mk) (1 mk) (1 mk)
7. (a)	b) Give one source Dishile c) Why is an increase increase carbon (Metha (19) State the Lechatelier	se in percentage of methane more working is easily flow	rrying than the same percentage	(1 mk) of (1 mk) (1 mk) (1 mk)
	b) Give one source Dishile c) Why is an increase carbon (Hetha (19) State the Lechatelier "Then a	se in percentage of methane more working is easily flow oxide. "Sprinciple."	rrying than the same percentage mmable than c is appured to a	(1 mk) of (1 mk) (1 mk) (1 mk)
(b)	b) Give one source Dishile c) Why is an increase increase carbon (Hetha (19) State the Lechatelier "Then a Cquidbium, The equation for disse	se in percentage of methane more working in early flow oxide. The continue in sonditions the system moves a	rrying than the same percentage mmable than c is appured to a	(1 mk) of (1 mk) (1 mk) (1 mk)
(b) E	b) Give one source Dishile c) Why is an increase increase carbon (Hetha (IV) State the Lechatelier "Then a Cquidhium, The equation for disso	se in percentage of methane more working oxide. The is easily for oxide. So principle. Change in conditions The system moves a condition of bismuth(III) chloride in wat water (white)	reging than the same percentage mmable than commable than commable than commable than commable that the commable that t	(1 mk) of (1 mk) (1 mk) (1 mk) (1 mk) (2 change 1)
(b) E	b) Give one source Dishile c) Why is an increase increase carbon (Hetha (IV) State the Lechatelier "Then a Cquidhium, The equation for disso	se in percentage of methane more working oxide. The is easily for oxide. So principle. Change in conditions The system moves a condition of bismuth(III) chloride in wat water (white)	reging than the same percentage mmable than commable than commable than commable than commable that the commable that t	(1 mk) of (1 mk) (1 mk) (1 mk) (1 mk) (2 change 1)
(b) E	b) Give one source Dishile c) Why is an increase increase carbon (Hetha (IV) State the Lechatelier "Then a Cquidhium, The equation for disso	e of methane. Then of onde out se in percentage of methane more work (iv) oxide. ne is easily flour Oxide. 's principle. Change in conditions the system moves a olution of bismuth(III) chloride in wat = BiOCl (s) + 2Cl (aq) + 2H (aq) (white)	reging than the same percentage mmable than commable than commable than commable than commable that the commable that t	(1 mk) of (1 mk) (1 mk) (1 mk) (1 mk) (2 change 1)

8.	(a) State Gay-Lussac's law	(1mk)
	When gares react, they do so in volumes That be	
	(b) Under certain conditions, methane reacts with steam to form carbon (II) oxide and only. Calculate the total volume of the gas that can be formed when 100cm ³ of steam rea	d hydrogen
	completely with methane. CHA, +H20, -> CO, +3H20, Iron g H20 react to passes con and 3 cm of H20 Loo cm of cheam policies (soom of co and 3) Total bolomes of the Danse force 1-1/2/2000	(2mks)
	Total blumes of the gares formed - (50+300 cm	30cm 0
9.	Diamond and graphite are allotropes of carbon.	
	(i) What are allotropes?	(1mk)
	Difference forms of an element in the Physical State	sano
	(ii) Explain why graphite conducts electricity while diamond does not	(1mk)
	The 4th valence election of Grbon in graphate is	deloca
	(iii) Diamond is used to drill through hard rocks	in sale
	It has strong coralene bonds and the atoms a	ile (Tilk)
0.	Starting with Lead (ii) oxide, describe how lead (II) sulphate can be prepared in the laborate	orv
	Kaad exam Lead du saide With dilute nitrà While divring. Filter exam Lead du saide to obtain Le	(1) cece;
	Minate. 10 to hilitate add dilute Haras Car No.	Di V
	Tiller to oblain 10004 who kings with dichiel was	ter and
1.	A mass of 3 2g of XOH regets completely with 20 3 cons	
115	A mass of 3.2g of XOH reacts completely with 20cm ³ of 2M sulphuric (VI) acid. (O=16, H (i) Write the equation for the reaction.	=1) (1mk)
	2XOH + H2C04 -> X2504 + H2O1	
	(ii) Calculate the relative atomic mass of X in the formula XOH.	(2mks)
	Moles of Haroff 2x 20 = D. Ot Moles.	
	Moles of XOH = 2x004 = 0.08 moles	4
	Moles of XOH = 2x004 = 0.08 moles - 1200 X= 40-13 =	23

4

24. The diagram below shows an iron bar, which supports a bridge. The iron bar is connected to a piece of magnesium metal.				
r		Iron bar		
	Soil		Magnesium metal	
Explain why	it is necessary to conne	ect the piece of magnesi	um metal to the Iron bar.	(2mks)
water	and air re	edely then in	on lievening to 1	hom heling,
	gives the reactions between Reaction with air	Reaction with water	Reaction with dilute acid	
Metal	Reaction with an Reacts	Does not react	Reacts	
S	Does not react	Does not react	Does not react	
U	Reacts	Reacts	Vigorous reaction	
	Reacts	N = 2-17 N == 2-1		
(a) Wh	nich metal is likely to be	e magnesium?		(1mk)
(b) Wl	hich metal may be used	to make a cooking pot?		(1mk)
(c) Ar	range the three metals i		rting with the most reactive.	(1mk)
26. a) What do y	you understand by the te	erm molar enthalpy of d	isplacement of an element?	(1mk)
This	is the enth	culty change	That examp when	ore mole g
b) During a displacement reaction, excess iron powder was added to 25cm ³ of 0.5M copper(II) sulphate solution. The temperature rose from 18.5°C to 33.0°C. Calculate the molar enthalpy of displacement of copper in copper (II) sulphate solution (specific heat capacity is 4.2 Jg ⁻¹ K ⁻¹ , Density of the solution = 1.0g/cm ³) (2mks)				
Mag	2 of colotion =	-25 × 19/cm = 2	5g different	rent
BH	= 25x H.2 x 14	25 = 15275	= 1522.	5
No.	of moler of	copper ion do	Placed	
	= 2500	5 = 0.0125	mole: = -12/9	
© MOKASA 2018	(00)	Form Four 9	SY -	emistry 233/1 [mo].

27. Below is a simplified scheme of Solvay process. Study it and answer the questions that follow.

	gås R	Sodium
		Carbonate
	The second secon	$(^1/_2mk)$
	(a) Identify gas R. Carbon (17) oxide gas	
	TIT	(1mk)
	(b) Write an issue equation for the process III. 2 Nation	<i>C</i>
	of and diam carbonate	$(^1/_2\text{mk})$
	(c) Give one use of southin caroniale.	my Making detendants
20	4.275g of a mixture of zinc sulphate and zinc carbonate reacted completely with	25cm ³ of 0.1 M
28.	H_2SO_4 . (Zn =65, C=12,O=10)	(1 mk)
	a) Write the equation of the reaction which takes place $ Z_{1} C_{2} + H_{2}C_{3} + H_{3}C_{4} + H_{3}C_{4} $ $ Z_{2} C_{3} + H_{3}C_{4} + H_{3}C_$	(D)261
	In Cos + Cos Cos	
	G. L. Lee the number of moles of sulphuric (VI) acid in the 25cm	(Tillk)
	Moleo = MxV = 0.1x25.71/200025	molec
	c) Find the percentage(%) mass of zinc sulphate in the mixture	(1 mk)
	c) Find the percentage(%) mass of zinc sulphate in the inixture moler of Zn @ = 0.0015 (mole retio of Zn ?	275-0-3125
	MOR 01 21120 - 1	
	= 0,0015x 113	4.275 = 92 (1/2mk) = 92
29.	Name one drying agent for hydrogen chloride	$(7_2\text{mk}) = 1$
	Concentrated supportant acid.	
	(ii) State and explain the observation that would be made when hydrogen	chloride gas is bubbled
		(1 /2 IIIKS)
	into a solution of silver nitrate. A white precipitate is formed. Silver	er encreap
	is proved which is a whole volce	
•	235 m 2 6 M 3 K	
		v = 738

10

12.	Hydrogen sulphide gas was mistakenly dried using concentrated sulphuric acid.	(1mk)
	a) Write an equation for the reaction that took place.	
	b) Using oxidation numbers, identify the reducing agent. H25 a a b oxidated to sulphor, oxidation as: 3H25+H254	
	c) Write an equation for the chemical test of hydrogen sulphide.	(1mk)
13.	Write equations to show the effect of heat on the following salts: a) Sodium hydrogen carbonate 2 NaHCoz, Hat Na, Coz + Coz + H2O	(1mk)
	b) Lead (II) nitrate	(1mk)
	2Pb (NO3) $=$ 2PbO $+$ 4NO ₂ $=$ 4NO ₂ $=$ 4NO ₂ $=$ 4NO ₂ $=$ 2PbO Anhydrous copper (II) sulphate $=$ 2CuSO ₄ $=$ 2CuO $=$ 5O ₂ $=$ 4SO ₃	(1mk)
	2(u30,710 a0 + 2 3)	9)
14.	Give the systematic names of the following compounds.	
	(a) CH ₃ CH CH ₂ CH ₃ CH ₃	
	2-Methyl butane	(1 mk)
	(b) $CH_3 CH CH_2CH_2OH$	
	3-Melhalpene-1-01	(1 mk)
	O (c) CH ₃ CH ₂ C O CH ₂ CH ₂ CH ₂ CH ₃	
	Butg1papanoate	(1 mk)

15. The set up below was used to investigate a chemical property of carbon. Study it and answer the questions that follow.

	(i) What observations were made on heating the mixture precipitate (2mks) - Line water from a Whete precipitate - Brown rolld forms in the boiling tube:
	- Righton rolled bring in the same
	(ii) What is the industrial application of carbon in terms of property investigated above. (1mk) Extraction of metals which are lower in the electrohom (a) Series from their oxides e.g. Zn, Cu, Pb, Fe etc.
16.	A farmer took a sample of soil from his farm for testing. Its PH was found to be 5.0. (2 mks)
	-The soil was dissolved in water and Universal Indicate added to the filhate. The PH was established from the PH cho
	b) He was then advised to treat the soil before the next planting season. Explain. (1 mk)
	The roll Was Waskin acidic and was advised
	la neutraliza ving a base, e.g. quiax limo.
17.	(a) Suppose 180cm ³ of a 2.0M solution is diluted to 1.0dm ³ . What will be the concentration of the resulting solution. (2 mks)
	$N, V_1 = N_2 V_2$
	M2= M1/1 2.0x18.0
	V ₂ (000
	•••••
	= 0.36 M
	(b) Why is water not used to put off oil fires?
	Oil is low dence Than water; Horepie mould-
	hoat on the water and berning would continue

6

Curves X and Y shown below were obtained when equal masses of magnesium ribbon and magnesium powder were reacted separately with aqueous acids of the same concentration. 18.

Time in minutes

a) ī	Explain which gas corresponds to Magnesium ribbon	7	(¹ / ₂ mk)
1	Tytaghostam 220	1	$(^{1}/_{2}mk)$

II Magnesium powder (1mk)

b) Why do the two curves meet at point W. The reaction had reached completion fall to

readonts had been used. 36cm³ of a solution of potassium hydroxide requires 25cm³ of 0.5M sulphuric acid to neutralize it. Calculate the concentration of alkali in g/dm³

2 KOH - H204 = 0.5 K25 - 0.00/25 holes Mole g H204 = 0.5 K25 - 0.00/25 holes

Moles of KOH-2x0.0125-0.025 moles Mdarity of KOH: 0: 025x 1000 = 0.69440M concentration in glam3 - 0.694456-38.899

Some wet coloured flowers were put inside a gas jar containing sulphur (IV) oxide gas. 20.

(2 mks) a) State and explain using and equation the observations made The hower as blooched I decolorised to a in water

forms Hose which lonies to give so b) How is the above reaction different from the one of chlorine gas?

Chlonne bleaches by exidation and

21. (i)	Describe how one can obtain oil from macadamia nuts in the laboratory. — Chish the nuts in a morter using a peatle. A	add.
	OVE VORTING COUNTY	the
	and the chief with the Excession	Por
	Proporation to exaporate laring behind oil.	
	4	$(^{1}/_{2}mk)$
(ii	Name the above method of separation Solvent	

The diagram below shows a set -up for preparation chlorine gas.

a) Complete the set-up to show how a dry sample of chlorine gas can be collected.

b) Write the equation for the reaction that produces chlorine gas.

(1mk)

Study the information in the table below and answer the questions that follow 23.

Bond	Bond energy (KJmol ⁻¹)
C-H	0 - 414
C1 – C1	_ 244
C-Cl	326
H – Cl	431

Calculate the enthalpy change of the reaction

Calculate the change
$$CH_{2}(Q_{2}) \rightarrow CH_{2}Cl_{2}(Q_{2}) + 2HCl_{2}(Q_{2})$$

Heart absorbed his bond breaking $2(C-H)+2(C-U)+2(H-U)+2(H-U)+2$

Form Four