Name:	Class: Adm.No
School:	Date:
	Sign:

233/2 CHEMISTRY Paper 2 JULY/AUGUST, 2018 Time: 2 hours

POST EVALUATION II EXAMINATION - 2018

Kenya Certificate to Secondary Education CHEMISTRY PAPER 2

TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES

- Write your name, admission number, date and school in the spaces provided.
- Answer all the questions in the spaces provided.
- All working must be clearly shown where necessary.
- Scientific calculators may be used.

FOR EXAMINERS' USE ONLY

Questions	Maximum Score	Candidate's Score
1	12	
2	13	
3	9	Grand Control of the
4	11	
5	12	
6	11	
7	12	
TOTAL	80	

	W.	8	of Calcil	ım given beid	ow and answer ques	nons mai
	$Ca_{(g)}$ C $a^+_{(g)}$	$Ca^+(g)$ $Ca^{2+}(g)$	- e ⁻ (1 st ion + e ⁻ (2 nd io	nization energonization energ	$y = 590 \text{kJmol}^{-1}$ $y = 1150 \text{kJmol}^{-1}$	
(i)	Define the term io					(1 m
(ii)	Explain why the s				ım is almost double	(2 m
b)	Study the table be	low and u			stions	
		Na	Al	Cl	NaCl	AlCl ₃
M.P	o in °C	98	660	-101	801	-
B.P	in °C	880	2460	-35	1413	-
Elec	ctrical conductivity	Good	Good	Does not	Good in solution or molten	Does no
Vale	ency	1	3	1	-	-
(i)	Explain why the n both are period 3 of			Cl is higher th	an that of aluminiur	n chloride (2 m
			• • • • • • • • • • • • • • • • • • • •	•••••		**********
(ii)		perties gi	ven in the	table above,	give two reasons wh	ny alumini (2 m
(ii) c)i)	Other than the proused in making co	perties gi oking pot the observium chlor	ven in the ss. vation macride	table above,	give two reasons when	ny alumini (2 m
	Other than the proused in making co	perties gi oking pot the observium chlor	ven in the es. vation madride	table above,	give two reasons when	ny alumini (2 m
	Other than the proused in making co	perties gi oking pot the observium chlor	ven in the es.	table above,	give two reasons when	ny alumini (2 m
	Other than the proused in making co	perties gi oking pot the observium chlor	ven in the es.	table above,	give two reasons when	ny alumini (2 m

• • • • •								
• • • • •			• • • • • • • •			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
a)	The table below gives the solubil	lities o	f amme	onium	phosph	ate at t	he state	d
tem	peratures.							
	Temp °C		10	18	26	34	42	50
			21				-	98
	Solubility g/100g of water		21	28	38.5	51	68.5	90
(i)	Plot a graph of solubility of amm	ionium	phosp	hate as	gainst to	empera	ture.	(3 m
(-)			Paren		,	P		(
			1 1 1 1 1 1 1		1 1 1 1 1 1 1			1 1 1 1 1 1 1
							#####	
	I 	++++++	++++++	++++++++++++++++++++++++++++++++++++	++++++		++++++++++++++++++++++++++++++++++++	
				1111111				
				1111111	1111111	7 1 1 1 1 1	1111111	1

	Ι	Determine the solubility o	, , ,		(1 mark)
• • • • •	••••••				
	••••••			4	
	II	Determine the molar conc $(N = 14, H = 1, P = 31, O)$) ₃ PO _{4(aq)} at 17°C	(2 marks)
	III	What mass of a saturated at 30°C	solution of (NH ₄)	3 PO ₄ in 50g of water	r will be present (2 marks)
		at 50°C			(2 marks)
	IV	State two applications of s	solubility curves		(2 marks)
i)	Use	an equation to explain how t			(1 mark).
v)	Stud	y the information in the table	e below and answ	er the questions that	follow.
	Sa	lt		00g of water at	
			45°C	60°C	
		Na ₂ CO ₃	35	80	
		Pb(NO ₃) ₂	77	101	
		ixture containing 90g of sodi r at 60°C was cooled to 45°C		172g of Lead(II) nitr	rate in 100g of
	(i)				(1 mark)
		••••••	• • • • • • • • • • • • • • • • • • • •		

(ii)	Calculate the mass of the salt that crystallised out	(1 mark)
		• • • • • • • • • • • • • • • • • • • •

3. A student set up the experiment below to collect gas K. The cotton wool was heated before heating the magnesium coil.

a)	Explain why it was necessary to heat the moist cotton wool before heating	(1 mark)
b)	Identify gas K	(1 mark)
c)	What property of gas K makes it to be collected as shown	(1 mark)
d)	Write down the equation for the reaction in the combustion tube	(1 mark)
e)	State the observation made in the combustion tube	(1 mark)
-8		

	f)	Calculate the volume of gas K produced in the above experiment at RTP if magnesium was completely burnt. (Malor volume of a gas at RTP is 24 0 dm ³ ; Ma = 24)	(3 marks)
		(Molar volume of a gas at RTP is $24.0 \mathrm{dm}^3$; $Mg = 24$)	
	g)	A flame should not be brought closer to gas K collected. Give a reason	
	•••••		
4	TT 41		
4.		ne standard reduction potentials for elements A, B, C, D and F to answer the ollow.	questions
	A^{2+} (aq	E^{Θ} volts $A_{(s)} - 2.90$	
	B^{2+} (aq)	$B_{(s)} - 2.38$	
	2C ⁺ (ac	$C_{2(g)} = C_{2(g)} = 0.00$	3
	D^{2+} (aq	$D_{(s)} + 2e$. **
	$^{1}/_{2}F_{2(g)}$	$F_{(aq)} + e_{(aq)} + 2.87$	ln ,
	a)i)	Which element is likely to be hydrogen. Give a reason for your answer.	,
	ii)	What is the E^{Θ} value for the strongest oxidizing agent	(1 mark)
	iii)	Draw a labelled diagram of the electrochemical cell that would be obtained cells of B and D are combined.	when half (3 marks)

- iv) Calculate the emf of the electrochemical cell contracted in (iii) above (1 mark)
- b) During the electrolysis of aqueous copper (II) sulphate using copper electrodes, a current of 0.2 Amperes was passed through the cell for 5 hours.
- (i) Write an ionic equation for the reaction that took place at the anode. (1 mark)
- (ii) Determine the change in mass of the anode which occurred as a result of electrolysis process.

process. (Cu = 63.5, 1 Faraday = 96500 coulombs) (3 marks)

5. Study the flow chart below and use it to answer questions that follow.

a)i) State the optimum condition of temperature required in step I (1 mark)

Name the catalyst used in ii) (1 mark) The catalytic chamber Π (1 mark) Step A b)i) Identify R (1 mark) Write two balanced chemical equations taking place in step A. ii) (2 marks) Identify the process taking place in c) Step B (1 mark) (i) ii) Step E -(1 mark)..... Explain how the reaction in step C occurs. Give the possible identity of substance T e) (1 mark) Write the formula of compound P and give one of its uses. Study the reaction scheme below and answer the questions that follow. a) C₆H₁₄ Step 1 C_4H_{10} C_2H_4 Polymer W $2Cl_2$ Step III UV light Step IV CH₃CH₂OH Step VI CH₃COOH

6.

(i)	Name the process in İ)Step I	(1 mark)
••••	II) Step (VI)	(1 mark)
ii)	State the homologous series to which the compound C ₄ H ₁₀ belongs	(1 mark)
iii)	State the reagent and the condition used in step IV	(1 mark)
iv)	Write an equation for the reaction in step III	(1 mark)
v)	Give one industrial application of the process in step II	(1 mark)
13		
vi)	Draw the structure of a repeat unit in polymer W	(1 mark)
b)	Give the IUPAC names of;	
	(i) CH ₃ CCH	(1 mark)
	(ii) HCOOH	(1 mark)
c)	When an organic compound A is reacted with potassium hydrogen car effervescence is observed. A reacts with ethanol to form a compound is shown below. O CH ₃ CH ₂ CH ₂ C-O-CH ₂ CH ₃	
	i) Write the molecular formula of compound A	
	¢.	

a) below	
	$11 \text{ Na} \longrightarrow {}^{9}_{6} \times + {}^{9}_{-1} \text{ P}$
(i)	Define the term radioisotope (1 mar
ii)	Find the values of a and b (1 mar
iii)	Identify the actual symbol of X (1 mar
 b)	The half-life of sodium-20 is 0.3 seconds. P grammes of sodium 20 decays to 6 grammes in 0.9 seconds.
(i)	Calculate the initial mass P of the radioisotope (2 mar)
ii)	With reference to sodium-20, give one use of the radioactive isotope (1 mark
 c)	The extraction of sodium from its ore takes place in a Downs cell. Below is a simplified diagram for the extraction.
	161
	motten ove + Calquin Ch

(i)	Name the ore from which sodium is extracted.	(1 mark)
ii)	Explain why in this process the ore is mixed with calcium chloride	(2 marks)
•••••		
iii) 	Write ionic equations for the reactions which place at; Cathode	(2 marks)
	Anode	
iv)	Why is sodium used in nuclear reactors?	(1 mark)