MARKING SCHEME

SAMPLE PAPER 4

233/1

1. (i) $\mathrm{C}^{\sqrt[1]{1} / 2}$
(ii) A $\checkmark 1 / 2$ Acetic acid is a weak acid since it is organic in nature $\checkmark 1 / 2$
(iii) $\mathrm{E} \checkmark 1 / 2$
2. $\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}-393 \mathrm{kj} \mathrm{mol}-1$

$$
\begin{aligned}
& \mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{(\mathrm{g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{t})} 285 \mathrm{kj} \mathrm{moly} \\
& \mathrm{CH}_{4(\mathrm{~g})}+20_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}-88 \mathrm{Kj} \mathrm{~mol} \\
& \mathrm{C}_{(\mathrm{s})}+0 / 2_{(\mathrm{g})} \longrightarrow \mathrm{Clo}_{2(\mathrm{~g})} 393 \mathrm{kj}
\end{aligned}
$$

$$
2 \mathrm{H}_{2(\mathrm{~g})} 0 / 2(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}-285 \times 2 \mathrm{kj}
$$

$$
\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{O}_{2} \longrightarrow-\mathrm{CO}_{2(\mathrm{~g})}+20 / 2+887 \mathrm{Kj}
$$

$$
\mathrm{C}_{(\mathrm{s})}+2 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow \mathrm{CH}_{4(\mathrm{~g})}-393+2 \mathrm{x}-285+887
$$

$$
\mathrm{C}_{(\mathrm{s})}+2 \mathrm{H}_{2(\mathrm{~s})} \longrightarrow \mathrm{CH}_{4(\mathrm{~s})}-76 \text { kj mole }-1
$$

3. a)

b) Alkenes $\checkmark 1 / 2$
c) 2,3-difluorobutane $\checkmark 1$
4. The bulb lights in $\checkmark 1 / 2$ set - up I and does not $\checkmark 1 / 2$ light in set-up II

Magnesium has delocalized $\checkmark 1$ electrons and diamond does not have delocalized electrons \checkmark
1
hence is a non conductor of electricity
5. $\mathrm{Pb}^{2+}+2 \mathrm{e} \longrightarrow \mathrm{Pb}(\mathrm{s})^{\checkmark 1 / 2}$

$$
\begin{aligned}
Q= & (0.2 \times 25 \times 60) \\
& =300 C \checkmark 1
\end{aligned}
$$

$(2 \times 96500) \mathrm{G} \longrightarrow 207 \mathrm{~g}$ of lead
300
$\mathrm{C} \longrightarrow(\underline{300 \times 207}) \quad \checkmark 1 / 2$ (2×96500)

$$
=0.3218 \mathrm{~g} \text { of lead } \checkmark 1
$$

6. Let the oxidation state for Mn be x

$$
\begin{aligned}
& x+3(-2)=0 \checkmark 1 \\
& x=+6 \checkmark 1 \quad \text { (the sign must be shown) }
\end{aligned}
$$

Systematic name of $\mathrm{Mn} \mathrm{O}_{3}$ is manganese (vi) Oxide $\checkmark 1$
7. a) $\mathrm{Ag}+\mathrm{e}-\longrightarrow \mathrm{Ag}$ (s)
b) Oxygen $/ / \mathrm{O}_{2}$
8. - Magnesium continues to burn

- White solid
- Yellow specks
any two correct award $1 / 2$ mones magnesium oxidized to magnesium oxide $\checkmark 1$
$\mathrm{Ag}_{(\mathrm{aq})}+\mathrm{e} \longrightarrow \mathrm{Ag}_{(\mathrm{s})}$
IF $\longrightarrow 108(\mathrm{~g})$ of Ag
Therefore $0.075 \mathrm{~F} \longrightarrow \underline{\underline{0.075 \times 108}{ }^{\checkmark} 1 / 2}$
1
$=8.1 \mathrm{~g}$ of $\mathrm{Ag} \checkmark 1 / 2$

9. $800 \mathrm{~g} \xrightarrow{\mathrm{t} 1 / 2} 400(\mathrm{~g}) \xrightarrow{\mathrm{t}^{1 / 2}} 200 \xrightarrow{\mathrm{t} 1 / 2} 100 \xrightarrow{\mathrm{t}^{1 / 2}} 50 \mathrm{~g}$

$$
\begin{aligned}
& 4 \mathrm{t} 1 / 2=100 \text { days } \checkmark 1 / 2 \\
& \text { therefore } \mathrm{t} 1 / 2=\underline{100} \\
&=25 \text { days }
\end{aligned}
$$

11. a) Increase surface area for dissolution of hydrogen chloride gas

- prevents suck back $\checkmark 1 / 2$
b) A White precipitate is formed due to formation insoluble silver chloride//

$$
\mathrm{Ag}+(\mathrm{aq})+\mathrm{CI}(\mathrm{aq}) \longrightarrow \mathrm{Agcl}(\mathrm{~s})
$$

The precipitate dissolved in excess aqueous ammonia to form a colourless solution due to formation of a soluble complex silver ions//

$$
\operatorname{Agcl}(\mathrm{s})+2 \mathrm{NH}_{3} \text { aq } \longrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right) 2\right]^{+}{ }_{\text {aq }}++\mathrm{Cl}_{\text {aq }}^{-}
$$

12. (i) 3 Mg (s) $+\mathrm{N} 2(\mathrm{~g}) \longrightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}$ (s) $\checkmark 1 / 2 \quad \checkmark 1 / 2$ state symbol
(ii) When water $\checkmark 1 / 2$ is added to magnesium nitride, ammonia gas which turns red litmus paper blue $\sqrt{1 / 2}$.
Ammonia is not produced when water is $\checkmark 1 / 2$ is added to oxide
13 a) (i) Water / $\mathrm{H}_{2} \mathrm{O}$ (i)
(ii) - Use anhydrous copper (ii) sulphate $\checkmark 1 / 2$ change from white to blue//

- Use dry cobalt (ii) chloride paper change from blue to pink $\checkmark 1 / 2$
b) The reddish $\checkmark 1 / 2$ brown hot lead (ii) oxide turns grey $\checkmark 1 / 2$
c) $\mathrm{H} 2_{(\mathrm{g})}+\mathrm{PbO}_{(\mathrm{s})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{Pb}_{(\mathrm{s})}$

14. (a) Nitrogen (I) Oxide $\checkmark 1$ - Reject dinitrogen oxide/ nitrous oxide
(b) has sweet smell and relights a $\checkmark 1$ glowing splint
(c) Was formerly used as an anaesthetic $\checkmark 1$ during dental surgery
15. Deflagrating spoon $\checkmark 1$

Use: to Burn solid substance $\checkmark 1$
16. a)

(i) $\mathrm{HO}-\mathrm{C}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{C}-\mathrm{OH} \checkmark 1$
$\begin{array}{ccl} & \mathrm{H} & \mathrm{H} \\ & \mathrm{l} & \\ \text { (i) } \quad \mathrm{H} \quad \mathrm{N}-\left(\mathrm{CH}_{2}\right)_{6}- & \mathrm{N}-\mathrm{H} \checkmark 1\end{array}$

b) A substitute of glass since its transparent
17. (a) (i)
$\checkmark 1$

(ii)

```
\checkmark 1
```

b) because of the Ione pair of electrons $\checkmark 1$
18.
a) Copper (II) oxide $/ / \mathrm{Cuo}_{(\mathrm{s})} \checkmark 1$

Heat
b) $\mathrm{CU}(\mathrm{OH}) 2 \longrightarrow \mathrm{CUO}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
19. - Distilled water is added to the mixture, potassium Chloride dissolves $\checkmark 1$ and lead (ii) chloride does

$$
\text { not } \checkmark 1
$$

- Filter to obtain potassium chloride as a filtrate and lead (ii) chloride as a residue $\checkmark 1 / 2$
- Dry the residue to obtain dry $\checkmark 1$ lead (ii) Chloride
- Evaporate the filtrate using an evaporation dish to obtain solid potassium chloride $\checkmark 1$

20. (i) Element	C	H
\%	92.31	7.69
R.A.M.	12	1
Moles	$\underline{92.31}$	$\underline{7.69} \sqrt{ } 1$
	12	1
RATIO	7.6 g	$7.6 \mathrm{~g} \checkmark 1$
E.F.	CH $\checkmark 1 / 2$	
(CH)	$=78$	
13 n	$=78 \checkmark 1 / 2$	
n	$=6$	
MF	$=(\mathrm{CH})_{6}$	
	$=\mathrm{C}_{6} \mathrm{H}_{6} \checkmark 1 / 2$	

(ii) $\mathrm{H}-\mathrm{C}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \checkmark 1 / 2$
$21 \mathrm{PCl}_{5(\mathrm{~s})} \mathrm{Hydrolyses} \checkmark 1$ in air to form hydrogen chloride fumes $\checkmark 1$
$\mathrm{PCl}_{5(\mathrm{~s})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{i})} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+5 \mathrm{Hcl}_{(\mathrm{g})}$
22. a) By thermal decomposition of calcium carbonate//
$\mathrm{CaCo3}(\mathrm{~s}) \xrightarrow{\text { Heat }} \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{(\mathrm{g})}$

Or burning Coke/carbon in excess air or oxygen// $\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \quad \mathrm{CO}_{2(\mathrm{~g})}$
b) By electrolysis $\checkmark 1$ of fused or anhydrous saturated / molten calcium chloride, so that calcium is deposited at the cathode

$$
\mathrm{Ca}^{2+}+2 \mathrm{e} \longrightarrow \mathrm{Ca}_{(\mathrm{s})} \checkmark 1
$$

23. $\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq}} \longrightarrow+\mathrm{Nacl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

$$
\begin{aligned}
100 \mathrm{~cm}^{3} \longrightarrow & 0.5 \text { moles } \mathrm{HCl} \\
30 \mathrm{~cm}^{3} \longrightarrow & \underline{30 \times 0.5} \\
& 1000 \\
& =0.015 \text { moles } \mathrm{Hcl} \checkmark 1
\end{aligned}
$$

Mole Ratio 1:1
No. of moles of NaoH reaching $=0.015 \checkmark 1$
$25 \mathrm{~cm}^{3} \longrightarrow 0.015$ moles NaOH
$1000 \mathrm{~cm}^{3} \longrightarrow \underline{1000 \times 0.015^{\checkmark}} 1$
25

$$
=0.6 \mathrm{~m}
$$

R.F.M. of $\mathrm{NaoH}=40$

Mass in Il $=0.6$
$40 \quad=0.6 \checkmark 1$
concentration $\quad=24 \mathrm{~g} / \downarrow \checkmark 1$
(correct units included
24. (a) $\mathrm{Q}^{3+} 2.8 \checkmark 1 / 2$

S $^{-} 2.88 \checkmark 1 / 2$
(b) P has a higher M.P. than $u \checkmark 1 / 2$
P has stronger metallic bonds than $u \checkmark 1 / 2$
P has stronger nuclear charge than U
(c) Element O \checkmark

Has the smallest atomic radius// most electronegative
25 a) The rate of diffusion of a fixed mass of gas is inversely proportional to the square root of its density, at the same conditions of temperature and pressure $\checkmark 1$
b) $\begin{array}{rl}\mathrm{Rx} & =\sqrt{\mathrm{My}} \\ \mathrm{Ry} & \mathrm{Mx}\end{array}$
$2=\sqrt{16}$
1 Mx
$4=16$
Mx

$$
\mathrm{Mx}=4
$$

26. a) $\mathrm{A} 2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{CO}_{2(\mathrm{~g})} \checkmark 1 / 2$

$$
\mathrm{BCO} 2_{(\mathrm{g})}+\mathrm{C}_{(\mathrm{s})} \longrightarrow 2 \mathrm{CO}_{(\mathrm{g})} \checkmark 1 / 2
$$

26. Poisonous carbon (ii) oxide $\checkmark 1$ is produced in absence of enough air
27. The mixture turns orange $\checkmark 1$

The hydroxide ions from NaOH aq $\checkmark 1$

React with the $\mathrm{H}+$ ions, thereby $\checkmark 1$
Reducing the concentration of $\mathrm{H}+$ ions $\checkmark 1$
Hence the equilibrium shifts to the left
28.

b) Sodium Peroxide // Na2 O2 $\checkmark 1$
29. has white hot glowing carbon particles $\checkmark 1$

