## MARKING SCHEME SAMPLE PAPER 4 233/1

- 1. (i) C√ ½
  - (ii)  $A^{\checkmark}$  \( \frac{1}{2} \) Acetic acid is a weak acid since it is organic in nature  $^{\checkmark}$  \( \frac{1}{2} \)
  - (iii) E ✓ ½
- 2.  $C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)} 393 \text{ kj mol} 1$   $H_{2(g)} + \frac{1}{2} O_{(g)} \longrightarrow H_2O_{(t)} 285 \text{ kj mol y}$   $CH_{4(g)} + 20_{2(g)} \longrightarrow CO_{2(g)} + 2 H_2 O_{-88} \text{ Kj mol}$   $C_{(s)} + 0/2_{(g)} \longrightarrow C/o_{2(g)} 393 \text{ kj}$   $2 H_{2(g)} 0/2_{(g)} \longrightarrow 2 H_2O_{-285} \times 2 \text{ kj}$  $CH_{4(g)} + O_2 \longrightarrow -CO_{2(g)} + 20/2 + 887 \text{ Kj}$

$$C_{(s)} + 2 H_{2(g)} \longrightarrow CH_{4(g)} - 393 + 2x - 285 + 887$$
  
 $C_{(s)} + 2 H_{2(s)} \longrightarrow CH_{4(s)} - 76 \text{ kj mole -1}$ 

3. a) 
$$H - C - C = C - C - H \checkmark 1$$

b) Alkenes ✓ ½

1

- c)  $2.3 \text{difluorobutane} \checkmark 1$
- 4. The bulb lights in  $\checkmark$  ½ set up I and does not  $\checkmark$  ½ light in set-up II

Magnesium has delocalized ✓ 1 electrons and diamond does not have delocalized electrons ✓

hence is a non conductor of electricity

5. Pb<sup>2+</sup> + 2e 
$$\longrightarrow$$
 Pb (s)  $\checkmark$  ½  
Q = (0.2 x 25 x 60)  
= 300 C  $\checkmark$  1

(2 x 96500) C→207 g of lead  
300 C → 
$$(300 \times 207)$$
  $\checkmark$  ½  
(2 x 96500)

$$= 0.3218 \text{ g of lead} \checkmark 1$$

6. Let the oxidation state for Mn be x

$$x + 3$$
 (-2) = 0  $\checkmark$  1  
 $x = +6 \checkmark$  1 (the sign must be shown)

Systematic name of Mn O<sub>3</sub> is manganese (vi) Oxide ✓ 1

- 7. a) Ag+ e- $\longrightarrow$  Ag (s)
  - b) Oxygen // O<sub>2</sub>
- 8. Magnesium continues to burn
  - White solid
  - Yellow specks

any two correct award ½ mones magnesium oxidized to magnesium oxide ✓ 1

Ag 
$$_{(aq)}$$
 + e  $\longrightarrow$  Ag $_{(s)}$   
IF  $\longrightarrow$  108 (g) of Ag  
Therefore 0.075 F  $\longrightarrow$  0.075 x 108  $\checkmark$   $\frac{1}{2}$   
1  
= 8.1 g of Ag  $\checkmark$   $\frac{1}{2}$ 

9. 
$$800 \text{ g} \quad t\frac{1}{2} \quad 400 \text{ (g)} \quad t\frac{1}{2} \quad 200 \quad t\frac{1}{2} \quad 100 \quad t\frac{1}{2} \quad 50 \text{ g}$$

4 t 
$$\frac{1}{2}$$
 = 100 days  $\checkmark \frac{1}{2}$   
therefore t  $\frac{1}{2}$  =  $\frac{100}{4}$   
= 25 days

- 11. a) Increase surface area for dissolution of hydrogen chloride gas
  prevents suck back ✓ ½
  - b) A White precipitate is formed due to formation insoluble silver chloride// Ag+ (aq) + CI (aq)→ Agcl (s)

The precipitate dissolved in excess aqueous ammonia to form a colourless solution due to formation of a soluble complex silver ions//

Agcl (s) + 2 NH<sub>3 aq</sub> 
$$\longrightarrow$$
 [Ag (NH<sub>3</sub>)2]<sup>+</sup> aq + + Cl<sup>-</sup> aq

- 12. (i)  $3 \text{ Mg (s)} + \text{N2 (g)} \longrightarrow \text{Mg}_3 \text{ N}_{2 \text{ (s)}} \checkmark \frac{1}{2} \text{ state symbol}$ 
  - (ii) When water ✓ ½ is added to magnesium nitride, ammonia gas which turns red litmus paper blue ✓½.

Ammonia is not produced when water is  $\checkmark \frac{1}{2}$  is added to oxide

- 13 a) (i) Water / H<sub>2</sub> O (i)
  - (ii) Use anhydrous copper (ii) sulphate ✓ ½ change from white to blue//
    - Use dry cobalt (ii) chloride paper change from blue to pink ✓ ½
  - b) The reddish ✓ ½ brown hot lead (ii) oxide turns grey ✓ ½
  - c)  $H2_{(g)} + PbO_{(s)} \longrightarrow H2O_{(l)} + Pb_{(s)}$
- 14. (a) Nitrogen (I) Oxide ✓ 1 Reject dinitrogen oxide/ nitrous oxide
  - (b) has sweet smell and relights a ✓ 1 glowing splint
  - (c) Was formerly used as an anaesthetic ✓ 1 during dental surgery
- 15. Deflagrating spoon ✓ 1

Use: to Burn solid substance ✓ 1

- 16. a) O O II
  - (i) HO C (CH<sub>2</sub>)<sub>4</sub> C OH ✓ 1



- b) A substitute of glass since its transparent
- 17. (a) (i)

**√** 1



**√**1

b) because of the Ione pair of electrons ✓ 118.

Heat

b) CU (OH) 2 
$$\longrightarrow$$
 CUO (s) + H 2 O(l)

19. - Distilled water is added to the mixture, potassium Chloride dissolves ✓ 1 and lead (ii) chloride does

not ✓ 1

- Filter to obtain potassium chloride as a filtrate and lead (ii) chloride as a residue 🗸 ½
- Dry the residue to obtain dry ✓ 1 lead (ii) Chloride
- Evaporate the filtrate using an evaporation dish to obtain solid potassium chloride  $\checkmark$  1

| 20. | (i) Element | C            | Н                |
|-----|-------------|--------------|------------------|
|     | %           | 92.31        | 7.69             |
|     | R.A.M.      | 12           | 1                |
|     | Moles       | <u>92.31</u> | <u>7.69</u> ✓ 1  |
|     |             | 12           | 1                |
|     | RATIO       | 7.6 g :      | 7.6 g <b>√</b> 1 |

E.F. 
$$CH \checkmark \frac{1}{2}$$
  
(CH) = 78  
13 n = 78 \lfrac{1}{2}  
n = 6  
MF = (CH) 6

(ii) 
$$H - C = C - CH_2 - CH_2 - CH_3 \checkmark \frac{1}{2}$$

21 PCl<sub>5 (s)</sub>Hydrolyses ✓ 1 in air to form hydrogen chloride fumes ✓ 1

$$PCl_{5 (s)} + 4 H_2O_{(i)} \longrightarrow H_3 PO_4 (aq) + 5 Hcl_{(g)}$$

22. a) By thermal decomposition of calcium carbonate//

$$Ca Co3_{(s)}$$
 Heat  $CaO_{(s)} + CO2_{(g)}$ 

Or burning Coke/carbon in excess air or oxygen//  $C_{(s)} + O_{2(g)} CO_{2(g)}$ 

b) By electrolysis ✓ 1 of fused or anhydrous saturated / molten calcium chloride, so that calcium is deposited at the cathode

$$C a^{2+} + 2 e \longrightarrow Ca_{(s)} \checkmark 1$$

23. 
$$HCl_{(aq)} + NaOH_{(aq)} \longrightarrow + Nacl_{(aq)} + H_2O_{(l)}$$

100 cm<sup>3</sup> → 0.5 moles HCl  
30 cm<sup>3</sup> 
$$\frac{30 \times 0.5}{1000}$$
  
= 0.015 moles Hcl ✓ 1

Mole Ratio 1:1

No. of moles of NaoH reaching =  $0.015\checkmark 1$ 

25 cm<sup>3</sup> 
$$\rightarrow$$
 0.015 moles NaOH  
1000cm<sup>3</sup>  $\rightarrow$  1000 x 0.015  $\checkmark$  1  
25  
= 0.6m  
R.F.M. of NaoH = 40

R.F.M. of NaoH 
$$= 40$$

Mass in II = 
$$0.6$$
  
40 =  $0.6\checkmark$  1

concentration = 
$$24 \text{ g/l} \checkmark 1$$

(correct units included

24. (a) 
$$Q^{3+}$$
 2.8  $\checkmark$   $\frac{1}{2}$   $S^{-}$  2.88  $\checkmark$   $\frac{1}{2}$ 

- (b) P has a higher M.P. than u ✓ ½
   P has stronger metallic bonds than u ✓ ½
   P has stronger nuclear charge than U
- (c) Element O ✓

  Has the smallest atomic radius// most electronegative
- 25 a) The rate of diffusion of a fixed mass of gas is inversely proportional to the square root of its density, at the same conditions of temperature and pressure ✓ 1

b) 
$$Rx = \sqrt{My}$$
 $Ry = Mx$ 

$$\begin{array}{ccc}
2 & = \sqrt{16} \\
1 & Mx
\end{array}$$

$$4 = 16$$

$$Mx$$

$$Mx = 4$$

26. a) A 2 CO 
$$_{(g)}$$
 + O  $_{2\,(g)}$   $\longrightarrow$  2 CO  $_{2\,(g)}$   $\checkmark$   $^{1}/_{2}$ 

B CO 2 
$$_{(g)}$$
 + C  $_{(s)}$   $\longrightarrow$  2 CO  $_{(g)}$   $\checkmark$   $\frac{1}{2}$ 

- 26. Poisonous carbon (ii) oxide ✓ 1 is produced in absence of enough air
- 27. The mixture turns orange ✓ 1The hydroxide ions from NaoH aq ✓ 1

React with the H+ ions, thereby ✓ 1

Reducing the concentration of H+ ions ✓ 1

Hence the equilibrium shifts to the left

28.



- b) Sodium Peroxide // Na2 O2 ✓ 1
- 29. has white hot glowing carbon particles ✓ 1