

(ii) Mg $_{3}$ N $_{2(s)}$ + 6 H $_{2}$ O $_{(l)}$ \longrightarrow 3Mg (OH) $_{2(aq)}$ + 2NH $_{3(g)}$ (1mk)Solubility at 30° c = 24g/100g of water Solubility at 70° c = 19g/100g of water Therefore mass of crystals = 24-19 \checkmark (2mks)=5g√ This is because at 70° c 19g of solute \checkmark saturates the solution while at 30° c the solution \checkmark is saturated with 24g of solute. Blue litmus paper turn to Red ✓ then it is bleached red colour is due to hydrochloric ✓ acid while bleaching in due to hypochloric (I) acid \checkmark (2mk) 10. (a) 2HCl (aq) + Zn (s)____**→** ZnCl $_{(aq)}$ + H $_{2(g)}$ \checkmark $ZnSo_{4 (aq)} + Cu_{(s)}$ $Zn_{(s)} + CuSo_{4(aq)}$ (b) Black \checkmark copper (II) oxide (solid) turns to red \checkmark -brown deposit of copper. Hydrogen reduces√ copper (II) oxide to copper \checkmark mks) 11. (a) Bulb light in setup I and not in set up II Aluminium has delocalized electrons which electricity while diamond does not conduct

(1mk)

(1m

(1m

(2

(2

(1

mks)

(b) - Making of drill- bits. - In jewellery

6. (a) Na $_2$ SO₃ \checkmark 1mk) (b) Reducing. \checkmark (1mk) (c) Sodium chloride /Nacl .✓

(1mk)

k

8.

9.

k)

7. (a) Fractional distillation of liquid air \mathcal{N}

(b) (i) lead (II) oxide / copper (II) oxide \cdot

12.(a) A state when the backward and forward reactions are going on at the same rate

mk)

(b) Magnesium reacts with steam producing magnesium oxide \checkmark which cannot react with hydrogen Equilibrium shifts to the left as backward ✓ Reaction is favoured (2mks)

13. (a) Burning wooden sprint burns with a pop- sound \checkmark

(b) Hydrogen is less dense than air \checkmark 14. Mole of acid = $\frac{25x0.1}{1000}$ = 0.0025 mols \checkmark Moles of H₂ S O₄: Na₂ CO₃ =1:1 \checkmark Therefore Mole of Na₂ CO₃ used = 0.0025 mols \checkmark Mole of Na₂ CO₃ in 1000 cm³ = $\frac{1.06x1000}{250}$ =4.24g \checkmark Molarity Na₂ CO₃ = $\frac{4.24}{106}$ =0.04m \checkmark Volume of Na₂ CO₃ used = M_aV_a = M_bV_b Vb = $\frac{M_aV_a}{M_b}$ $= \frac{0.1x25}{0.04} \checkmark$

15. Carbon (II) oxide is toxic/ poisonous hence can cause death when inhaled. ✓ Carbon (IV) oxide is a green house gas which can lead to global warning ✓

16. (a)
$$2A_{(s)} + 2H_2 O_{(l)} \longrightarrow 2 AOH_{(aq)} + H_{2(g)} \checkmark$$
 (2mk) (1mk)

(b) Add water ✓ to the mixture E sulphate dissolves while lead (II) sulphate does not. Filter ✓ to remove lead (II) sulphate and sulphate of E as Filtrate Dry ✓ lead (II) sulphate in the sun /between filter paper / by heating. Heat the filtrate to saturation point and cool for the crystals to form.

(2mk)

17. (a) Water dissolves ✓ the hydrogen carbonate H⁺ ✓ ions produced decompose ✓ the hydrogen carbonate releasing carbon (IV) oxide ✓ which raises the dough
(b) HX (aq) + BHCO 3 (aq) → BX(aq) + H₂O (L) +CO 2 (g) (2mk)

- 18. Digest the powdered ore with dilute HNO₃ (aq). Filter. Add NaOH (aq) to the filtrate. A red brown ppt confirms presence of from iron / OR
 Digest the powdered ore with dilute hydrochloric acid or sulphuric acid; ✓ filter; add NaOH (aq) to the filtrate. Dirty green precipitate confirms the presence of iron
 (2mks)
- 19. (a) Sketch is below ✓; starts at origin✓ and levels off at the maximum ✓ level. (2mks)
 (b)- Catalysts lower activation energy ✓ OR

(2mks)

- Provide surface area which reactants reacts \checkmark as they form intermediate products the catalyst is released to be reused.

20. (a)- Simple covalent 🗸

- Vander Waal's forces ✓

k)

(b) It has weak Vander Waals forces holding the molecules together the forces require less energy to be broken ✓

(1m

(1m

(1mk)

(2mks)

21. Ratio of trona: sodium carbonate=2:3 Mass of trona: carbonate Na 2 CO3. NaHCO 3 . 2H2 O: Na2CO3 =226X2:106X3 =452:318 (2mks)

Therefore 3tonnes of N_{a2}CO₃ will produced by

$$\frac{452}{318}$$
 x3 =4.264 tonnes

1 mk)

22(a) (i) I ${}_{2}^{4}He$ / alpha particle✓ (1mk)

(ii)
$$II_{-1}^{0}e/$$
 beta particle \checkmark

(1mk)

(b)
$$^{210}_{84} P_0 \longrightarrow ^{206}_{82} Pb + ^4_2 He \checkmark$$
 (1mk)

(c) - Genetic mutation in living tissues causing cancers - Heat generated can cause fire leading to mass destruction

(1 m k)

(

23.

Bond broken bond formed C - H = +413C- CL =-326 CL- CL <u>=+243</u> H - CL = -431+656KJ -757 Overall energy = $+656 - 757\checkmark$ =-101kj/mol√ (3mks) $2NaNO_{2(S)} + O_{2(g)}$ 🗸 24. (a) 2NaNO₃ (1mk)

(b) It is insoluble in water: it does not react with water (1mk)

(c) No effect on the litmus \checkmark paper because the gas produced is neutral (1mk)

25. (i) and (ii) ✓

30. n +-2 x 2 =0 \checkmark n - 4 =0 n=+4 Oxidation of Pb =+4 \checkmark Cation present = Pb⁴⁺ \checkmark