SAMPLE PAPER 2

MARKING SCHEME

233/1

1	a) Name - Froth Flotation $\sqrt{1/2}$
	Use - To concentrate the Ore
	b) 2 CuFe S $_{2(s)}$ + 4 $O_{2(g)}$ Cu ₂ S _(s) + 2 FeO _(s) + 3SO _{2(g)}
	c) - Making ornaments
	- Electrical wires
	- Coins
	- Pipes
2	a) Moles of acid = $\underline{100} \ge 1 = 0.1$ moles \checkmark
	1000✓
	Moles of carbonate $\underline{4.2} = 0.05\checkmark$
	84
	Hcl is in excess by 0.05✓
	b) Moles of $\operatorname{Co}_{2(s)} \longrightarrow 0.05$
	volume of $CO_2 = 24 \times 0.05 = 1.2 \text{ dm}^3$
3	a) The volume a fixed mass of gas is inversely proportional to its pressure at
	constant temperature
	- Particles of a gas are widely spaced hence can be compressed
	b) Low pressure
	High temperature
4	a) (i) Butanoic acid
	(ii) Propylethanoate
	b) H H OH OH
	C = C + [O] cold dilute
	$H H H + KMnO_4 CH_2 - CH_2$

5	a) D, has the weakest nuclear charge compared to the other non metal
	b) B – the ion of B has stronger nuclear charge attraction for two energy level
	than that of A
6	a) (i) K
	(ii) J
	c) NH ₄ +
	Proton donor
7	a) X - Fractionating column
	Y - Liebic condenser
	b) to condense back the component of higher boiling point
	c) shown on the diagram
	d) fractional distillation
8	a) They have a higher nuclear charge hence electrons are firmly held/more energy
	needed to lose the valence electrons than in group 1
	b) Down group 1 atomic size increases while nuclear attraction reduces hence
	ease of electron loss while down group 7 increased atomic size reduces the
	attraction for the incoming electrons / tendency to repel incoming electron
	increases down the group ?
9	a) Add NH _{3 (aq)} / NaoH _(aq)
	Zn^{2+} - white ppte soluble in excess
	Fe $^{2+}$ - dirty green ppte insoluble in excess
	b) Add a cidified $K_2 C_2 O_7$ of CO ² ₃ no effect
	SO_{3}^{2} - changes colour of K_{2} $Cr_{2v}O_{7}$ from orange to green
	v
	CO_{3}^{2} - no effects
	SO ² ₃ - KMnO ₄ decolourized

10	a) A ₂ B
11	a) W - Conc hydrochloric acid
	Y – Conc sulphuric acid
	b) Not necessary
	- KMnO ₄ is stronger
	oxidizing agent than MnO $_2$
	c) Remove traces of HCL fumes
12	- Pass the gases through lime water separately
	- Carbon (iv) Oxide form white ppte
	- carbon (ii) oxide want forms ppte
13	a) Reaction carried out in a closed system or vessel
	b) Increase in temperature
	- Reduction in pressure
14	Moles of acide = 18×0.22
	1000
	Moles of carbon $\frac{1}{2} \times 18 \times 0.22$)

	1000
	concentration of carbon $=$ <u>18 x 0.22</u> x 1000
	2000 25
	0.0792
	mass in 200 cm ³ = molar mass x vol in litre x concentration
	<u>138 x 200 x 0.0792</u>
	1000
15	a) Neutron to proton ratio
	Amount of energy released
	b) $a = 2, b = 2$
16	- Bubbles of a gas at the a node
	- Brown deposits at the cathode
	- Blue colour of solution fade
	b) 1 or 2
17	a) M – colorless liquid condenses/ colourless gas condensed to colourless liquid
	N - White ppte formed
	b) at M - water (H ₂ O)
	N - carbon (iv) oxide (CO ₂)
18	Mass of hydrated salt = $305 - 300 = 5g$
	Mass of dehydrated salt = $302.2 - 300 = 3.2$ g
	Mass of water of crystallization $5 - 3.2 - 1.8g$
	$CUSO_4$: H_2 O
	$\frac{3.2}{150.5} \qquad \qquad 10$
	159.5 : 18
	$0.02 \cdot 0.1$
	$0.02 \cdot 0.1$
	1 . J
	$E F = CUSO_4 5 H_2 O$
	0r

	Mass of water of crystallization <u>18 x</u>
	Mass of dyhydrated salt 159.5
	$\underline{1.8} = \underline{18x}$
	3.2 159.5
	$x = 1.8 \times 159.5 = 5$
	3.2 x 18
	CUSO 4 5 H ₂ O
19	$H_{aq} + OH_{aq} \longrightarrow H_2O_1$
20	a) - air is compressed to a pressure of 200 atmosphere
	repeated compression and expansion of air cools it to a liquid when its
	temperature falls to -200° C
	b) CO_2 would turn to solid in the pipes and this causes blockages of the pipe
21	(i) It turns red litmus paper blue and has no effect on blue litmus papers
	(ii) Magnesium nitride
	(iii) Mg ₃ N _{2 (s)} + 6 H ₂ O ₁₁ \Rightarrow 3 Mg (OH) _{2(s)} + 2 N H _{2 (gs)}
22	a) two half of the same element have <u>O</u> potential or copper is the reference
	electrode
	b) weakest oxidizing is K weakest reducing is Ag+
	c) $0.79 - (-2.75) = +3.54$ V
23	a) Δ_1 H ₁ heat of atomization of sodium
	Δ_2 H ₂ heat of ionization of sodium
	Δ_1 H lattice energy of sodium chloride
	b) 434 + 371 + 483 - 781=507
24	a) Tripple bond in the molecule requires a lot of energy to break, making nitrogen
	relatively more chemically stable
	- Nitrogen forms a stable ion by gaining three electrons and gain of 2^{nd} and

	3 rd electron require a lot of energy
	b) Nitrogen has low boiling point (-196° C
25.	a) J. conducts electricity in both solid and liquid state
	b) Giant covalent structure
	- doesn't conduct electricity and has high M.P and B.P
26	a) Halogens
	b) K is more reactive than L
	K loses one electron while L losses 2 hence more
	energy required
	$P_2 Q_3$
27	a) Sulphur has allotrophes with different melting points
	b) Its high temperature (170° - 180° C)melts the sulphur which melts at
	113° C – 119° C
	- Its high pressure of 10 atom help to force molten sulphur out of the
	deposits to the surface
	c)
28	Soap less detergent