MARKING SCHEME

SAMPLE PAPER 3

232 / 1

PAPER 1

- Penalise if the equations are not balanced and have no states
- Penalise for wrong units or missing units
- Award mark for exhaustive explanations
- 1. i) L \checkmark This is because its's components \checkmark correspond the illegal drug N
 - ii) The line where the wet solvent creeps up the paper \checkmark

2.
$$\operatorname{KOH}_{(aq)} + \operatorname{HNO}_{3(q)} \longrightarrow \operatorname{KNO}_{3(aq)} + \operatorname{H}_2O_{(1)} \checkmark \frac{1}{2}$$

Mole ration is 1 : 1

Moles of HNO3(aq) =
$$\frac{100 \times 2}{1000}$$

$$= 0.2 \text{ moles} \checkmark \frac{1}{2}$$

Moles of KOH_(aq) in 100cm³ = 0.2 moles $\checkmark \frac{1}{2}$

Moles of KOH_(aq) in 200cm³

= 0.4 moles \checkmark 1/2

 $\therefore \text{ Mass y} = 0.4 \text{ x } 56$

$$= 22.4 \text{ g} \checkmark \frac{1}{2}$$

The value of $y = 22.4 \text{ g} \checkmark \frac{1}{2}$

3. $H_2O\checkmark$ it's proton donor. It donates an electron to $NH_{3(g)}$

4. a) i) Concentrated hydrochloric acid $\checkmark \frac{1}{2}$

ii) Concentrated sulphuric (VI) acid ✓ ¹⁄₂

b) i) The tubes in the wash bottles with the drying agent are arranged the other way round (opposite) \checkmark

- ii) Chlorine should be collected by downward delivery method \checkmark
- iii) The tube taking the gas from the conical flask dips into the reactants \checkmark

iv)

- Hydrogen Chloride does not dissociate into ions in methylbenzene. ✓ On addition of water, HCl dissociates ✓ and H⁺_(aq) reacts with carbonates evolving Carbon (IV) Oxide gas (CO_{2 (g)})
- 6. i) Y is a metal \checkmark
 - ii) x is a non metal \checkmark
 - iii) x is insoluble in water \checkmark
- 7. a) i) Upward displacement of air or (accept any) downward delivery \checkmark
 - ii) Downward displacement of air or ✓upward delivery
 - b) P is more denser than $Q\checkmark$ because it's collected by downward delivery \checkmark
- 8. Stage 1

Process: Oxidation of carbon (coke) to carbon (II) oxide✓

Stage 2

Process :- Reduction of Zinc oxide✓

Stage 3 :-

Process Recycling of carbon (IV) oxide to regenerate \checkmark $\frac{1}{2}$ carbon (II) oxide \checkmark $\frac{1}{2}$

9. i) The structure of copper and graphite, have delocalized electrons. Copper metallic structure

has a cubic structure is which every atom is surrounded by twelve $\checkmark \frac{1}{2}$ other equidistant atoms of copper. Similary graphite have free electrons which makes graphite a good conductor $\checkmark \frac{1}{2}$

- All the outer electrons of carbon atoms in diamond are used to form strong covalent bonds. This makes it the hardest known substance✓
- Place a few drops of CH₃CH₂OH on a water ✓ glass and light it. It burns with a blue flame to produce CO_{2(g)}. No effect on CH₃CH₂COOH acide . or CH₃CH₂OH also react with Pcl₅ to Hcl_(g) ✓ (Award marks for any answer which distinguishes the two Substance)

11.
$$CxHy_{(g)} + O_{2(g)} \longrightarrow CO_{2(g)} + H_2O_{(l)} \checkmark \frac{1}{2}$$

$$10 \text{ cm}3$$
 $60 \text{cm}3$ $40 \text{cm}3 \checkmark \frac{1}{2}$ Volume 1 vol 6 vols $4 \text{ vols} \checkmark \frac{1}{2}$ (Guy lussacs law ofcombing volumes)ratio1 mole 6 moles 4 moles No ofmoles

$$\therefore \operatorname{Cx} \operatorname{Hy}_{(g)} + 6\operatorname{O}_{2(g)} \qquad 4 \operatorname{Co}_{2(g)} + 4 \operatorname{H}_2\operatorname{O}_{(l)} \checkmark \frac{1}{2}$$

$$\therefore \qquad x = 4\checkmark \frac{1}{2}$$

$$y = 8\checkmark \frac{1}{2}$$

The emphirical formula becomes $C_4H_{8(g)}\checkmark \sqrt[1]{_2}$

12. a)
$$\operatorname{Zn}^{2+}_{(aq)} + 4 \operatorname{NH}_3(aq) \longrightarrow \left(\operatorname{Zn}(\operatorname{NH}_3)_4\right)^{2+}_{(aq)} \checkmark$$

b) Tetraamine Zincate (II) ion \checkmark

13.
$$\frac{V1P_1}{T_1} = \frac{P_2 V_2}{T_2} \checkmark \frac{1}{2}$$

$$\frac{105 \times 650}{259} = \frac{15 \times 690}{T_2} \checkmark \frac{1}{2}$$

$$T_2 = \frac{15 \times 690 \times 259}{105 \times 650} \checkmark \frac{1}{2}$$

 $= \underline{2680650} \checkmark \frac{1}{2}$ 68250

or

= 39.28 k

i) Dissolve in concentrated H₂SO₄, NH_{3(g)} and ethane (C₂H₄) will dissolve ✓ leaving insoluble

H_{2 (g)}. The gas obtained is H_{2 (g)} which can be removed \checkmark

ii) $CH_2 = CH_2_{(g)} + H_2SO_{4(l)} \longrightarrow CH_3CH_2OSO_3H_{(aq)} \checkmark$

or

 $CH_3CH_2 HSO_4 (aq) \checkmark$ (award any of the two)

15. Burning Mg is accompanied with a lot of heat thus breaking $CO_{2(g)}$ into c $_{(s)}$ and $O_{2(aq)}$. O_{2g}

Support burning while zinc \checkmark is less reactive and accompanied with less energy not able to decompose CO_{2(q)} to C_(s) and O₂(g) and \checkmark as a result it put off

16. i) y 2 : 8 : 6
$$\checkmark$$
 $\frac{1}{2}$

$$z \longrightarrow 2:8:8:2\sqrt{\frac{1}{2}}$$

x – represent the electrons

(award marks for dots or crosses)

- 17. Aqeous sulphuric acid changes anhydrous copper (II) sulphate to blue, since the water in
 ✓ the acid is used up it ✓ becomes blue hydrated copper (II) sulphate.
- 18. Mass of saturated solution \longrightarrow 26.86 \checkmark $\frac{1}{2}$

- <u>15.86</u>

11.00g

Mass of dry chlorate (KClO₃)
$$16.86$$

- $15.86 \checkmark \frac{1}{2}$
 1.00 g

Mass of water \longrightarrow 26.86 <u>16.86</u> 10.00 g \checkmark ¹/₂

Therefore 10 g of water contains 1 g of $KCLO_{3(s)}$ It implies that 60g of water contains

$$60 \times 1 \checkmark \frac{1}{2}$$

$$10$$
= 6 g of KCLO₃ in 60 g of water at 30° C $\checkmark \frac{1}{2}$

The solubility of KCLO₃ is 10 g in 100g of water at 30° C \checkmark ¹/₂

19. a)
$$\left(\frac{x-y}{x}\right) \times 100\%$$

i)

b) No change on red litmus \checkmark paper , but blue litmus paper changes \checkmark to red, because the solution becomes acidic (release of $CO_{2(g)}$)

a)

AlCl_{3(s)} Covalent bond \checkmark

ii) MgCl_{2(s)} Ionic bond \checkmark

(award marks for any)

- 21 Sharp boiling and melting points \checkmark
- 22. i) $x \text{Ionisation (ionisation)} \checkmark$ $Y - \text{hydration (Hydration)} \checkmark$

ii)
$$150 + x + (-2251) = 111$$

 $x + (-2101) = 111 \checkmark \frac{1}{2}$ x = 111 + 2101 $= 2212 \text{ kJ mol}^{-1} \checkmark \frac{1}{2}$ (award no mark minus units) Soapless detergent✓ 23. i) It does not form scum (solid) \checkmark ¹/₂ ii) Non-biodegradable hence cause frothing \checkmark 1/2 in sewage as a result causes pollution iii) Observation :- changes the colour from pale yellow to dark – brown \checkmark 24. i) Effect :- It absorbs energy thus break-up of dinitrogen tetraoxide to nitrogen (IV) oxide molecules✓ i) Brown fumes observed (Brown gas given out) $\checkmark \frac{1}{2}$ 25. a) ii) Black solid deposited \checkmark $\frac{1}{2}$ iii) Blue colour fades because water of crystallization is given out $\checkmark \frac{1}{2}$ (award any two correct answer) b) $NO_{2(g)} + H_2O_{(g)} \longrightarrow HNO_{3(aq)} + HNO_{3(aq)}$ c) Relights a glowing splint x − 143 ✓ ½ 26. a) Y − 50 ✓ ½ Energy generations \checkmark $\frac{1}{2}$ b) i) Food preservation $\checkmark \frac{1}{2}$ ii) Pest control $\checkmark \frac{1}{2}$ iii) Carbon – dating $\checkmark \frac{1}{2}$ iv)

(any two correct answers award)

27.
$$M^{2+}_{(aq)} + 2e^{-} \longrightarrow M_{(s)} - 0.44 \text{ v} \checkmark \frac{1}{2}$$

 $J+(aq) + e^{-} \longrightarrow J(s) + 0.52 \text{ v} \checkmark \frac{1}{2}$

 \therefore E reduced – E oxidised

$$= 0.52 - (-044) \checkmark \frac{1}{2}$$

 $= 0.96 \text{ v} \checkmark \frac{1}{2}$

Overall Reaction

$$J^{+}_{(aq)} + M_{(s)} \longrightarrow J_{(s)} + M^{2+}_{(aq)} = +0.96 V \checkmark \frac{1}{2}$$

The sulphate J_2SO_4 cannot be kept in container of metal M because it reacts with the container \checkmark

and metal M displaces it (J) from the solution

28. a)
$$4NO_{2(g)} + 2Ca(OH)_{2(aq)} \longrightarrow Ca(NO_3)_{2(aq)} + Ca(NO_2)_{2(aq)} + 2H_2O_{(l)} \checkmark$$

No mark for unbalanced & no states

b)
$$3Cu_{(s)} + 8 HNO_{3(aq)} \longrightarrow 3 CU(NO_3)_{2(aq)} + 4 H_2O_{(l)} + 2NO_{2(g)} \checkmark$$

(award no mark if it's not balanced and no states)

c)
$$S_{(s)} + 6HNO_{3(aq)} \longrightarrow H_2SO_{4(aq)} + 6NO_{2(g)} + 2H_{2(l)} \checkmark$$

i) $Nacl(s) H_2O_{(l)} Na+(aq) + Cl_{(aq)} \checkmark \frac{1}{2}$
Mole ratio $1 : 1$

1 mole of Nacl contains 6.023 x 10^{23} Cl⁻ ions \checkmark $\frac{1}{2}$

: 0.5 moles of Nacl will contain

29.

(6.023 x 10²³ x 0.5) ions
= 3.0115 x 10²³ ions of Cl⁻
$$\checkmark$$
 ¹/₂
ii) AlCl_{3(s)} H₂0_(l) Al³⁺_(aq) + 3cl⁻_(aq)

1 mole of AlCl₃ contains 3 moles of cl⁻ $_{(aq)} \checkmark \frac{1}{2}$

 $\therefore 0.5 \text{ moles will contain } 3 \ge 0.5$ = 1.5 moles of cl⁻ ions But 1 mole of AlCl₃ contains 6.023 \empty 10²³ ions $\therefore 1.5 \text{ moles will contain} \sqrt{\frac{1}{2}}$ (1.5 \empty 6.023 \empty 10²³) ions of cl⁻ = 9.0345 \empty 10²³ ions of cl⁻ (aq) $\sqrt{\frac{1}{2}}$

30. Mgo has giant ionic \checkmark structure while SiO₂ has giant covalent structure \checkmark . MgO in molten state contains ions which will conduct the electric current while SiO₂ does \checkmark not form ions.