CHEMISTRY 2009 REVISION SERIES

CHEMISTRY FORMULARS BOOK

CONTAINS ALL THE CHEMISTRY FORMULARS

By: Eddah Kipsat Kangogo

Produced and Marketed By;

Idealprice Consultants,
P.O. Box 15339-00100,

Nairobi.
Tel: 0716413941
Email: idealpricedirector@gmail.com

TABLE OF CONTENTS

PAGE

1. Gas Laws 5
2. Boyle's Law 5
3. Charles' Law 6
4. The Ideal Gas Equation 7
5. The Equation of State 8
6. Graham's Law of Diffusion 11
7. Temperature Scales 18
8. Celsius Scale 18
9. Absolute or Kelvin Scale 18
10. pH Values 19
11. Enthalpy Changes 21
12. Faraday's Laws of Electrolysis 23
13. Faraday's First Law of electrolysis 23
14. Faraday's Second Law of electrolysis 25
15. Faraday's Constant 25
16. Einstein's mass - Energy Equation 29
17. Hydrocarbons 30
18. Alkanols 32
19. Volumetric Analysis 33
20. Diluting a Solution 34
21. To determine the number of water of crystallization in a hydrated salt. 37
22. Practice Questions 40
23. Answers to Practice Questions 44

GAS LAWS

BOYLE'S LAW

The volume of a fixed mass of a gas at a constant temperature is inversely proportional to the pressure.

```
\(\mathrm{P} \& \frac{\mathrm{I}}{\mathrm{V}}\) (temperature is constant)
\(P=\frac{\mathrm{k}}{\mathrm{V}}\)
\(P V=k\)
```

$\therefore \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$

Problem

A gas occupies $600 \mathrm{~cm}^{3}$ at 760 mm Hg at $38^{\circ} \mathrm{C}$. What will be the volume if pressure is reduced to 380 mm Hg at the same temperature.

Solution

$$
\begin{array}{ll}
\mathrm{P}_{1}=760 \mathrm{~mm} \mathrm{Hg} & \mathrm{~V}_{1}=600 \mathrm{~cm}^{3} \\
\mathrm{P}_{2}=380 \mathrm{~mm} \mathrm{Hg} & \mathrm{~V}_{2}=?
\end{array}
$$

$$
\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}
$$

$$
\mathrm{V}_{2}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{P}_{2}}
$$

$$
=760 \mathrm{~mm} \mathrm{Hg}^{2} 600 \mathrm{~cm}^{3}
$$

$$
380 \text { mm Hg }
$$

$$
=\underline{1200 \mathrm{~cm}^{3}}
$$

CHARLES' LAW

The volume of a fixed mass of gas, at constant pressure, is directly proportional to its absolute temperature (K)

$$
\begin{aligned}
& \mathrm{V} \& \mathrm{~T} \text { (Pressure constant) } \\
& \underline{\mathrm{V}}=\mathrm{k} \\
& \therefore \frac{\mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\underline{\mathrm{V}}_{2}}{\mathrm{~T}_{2}}
\end{aligned}
$$

Problem

The volume of a gas was found to be $200 \mathrm{~cm}^{3}$ at a temperature of $20^{\circ} \mathrm{C}$. The temperature of the gas was raised to $80^{\circ} \mathrm{C}$. Calculate the new volume of the gas.

Solution:

$$
\begin{array}{rlr}
\mathrm{V}_{1} & =200 \mathrm{~cm}^{3} & \mathrm{~T}_{1}=20+273=293 \mathrm{~K} \\
\mathrm{~V}_{2} & =? & \mathrm{~T}_{2}=80+273=353 \mathrm{~K} \\
& \\
\underline{\mathrm{~V}}_{1} & =\frac{\mathrm{V}_{2}}{\mathrm{~T}_{1}} & \\
\mathrm{~V}_{2} & =\frac{\mathrm{V}_{1} \times \mathrm{T}_{2}}{\mathrm{~T}_{1}} & \\
& =\frac{200 \mathrm{~cm}^{3} \times 353 \mathrm{~K}}{293 \mathrm{~K}} & \\
& =\underline{240.9 \mathrm{~cm}^{3}} &
\end{array}
$$

THE IDEAL GAS EQUATION

It is possible to combine both Boyle's and Charles' Law to give the gas equation for any gas behaving ideally.

$$
\begin{array}{ll}
\text { Boyle's Law } & \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \\
\text { Charles' Law } & \underline{\mathrm{V}}_{1}=\underline{\mathrm{V}_{2}} \\
& \mathrm{~T}_{1} \mathrm{~T}_{2} \\
\text { Combined } & \frac{\underline{\mathrm{P}}_{1} \underline{\mathrm{~V}}_{1}}{\mathrm{~T}_{1}}=\frac{\underline{\mathrm{P}}_{2} \underline{\mathrm{~V}}_{2}}{\mathrm{~T}_{2}}
\end{array}
$$

Problem:

It is found that the volume of a given mass of gas is $360 \mathrm{~cm}^{3}$ at $50^{\circ} \mathrm{C}$ and 700 mmHg pressure. What will be the volume at s.t.p.

Solution

```
\(\mathrm{P}_{1}=700 \mathrm{~mm} \mathrm{Hg} \mathrm{T}_{1}=50+273=323 \mathrm{~K}\)
\(\mathrm{P}_{2}=760 \mathrm{~mm} \mathrm{Hg} \mathrm{T}_{2}=273 \mathrm{~K}\) (at s.t.p)
\(\mathrm{V}_{2}=\) ? \(\quad \mathrm{V}_{1}=360 \mathrm{~cm}^{3}\)
```

$\underline{\mathrm{P}_{1} \underline{\mathrm{~V}_{1}}} \mathrm{~T}_{1}=\frac{\underline{\mathrm{P}}_{2} \underline{\mathrm{~V}_{2}}}{\mathrm{~T}_{1}}$
$\mathrm{V}_{2}=\underline{\mathrm{P}}_{1} \underline{V}_{1} \times \underline{\mathrm{T}_{2}}$
$V_{2}=700 \mathrm{~mm} \mathrm{Hg} \times 360 \mathrm{~cm}^{3} \times 273 \mathrm{~K}$
$760 \mathrm{~mm} \times 323 \mathrm{~K}$
$=280.3 \mathrm{~cm}^{3}$

THE EQUATION OF STATE

The general ideal gas equation below

$$
\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}
$$

can be improved by taking and including the Avogadro's law which states that equal volumes of all gases at the same temperature and pressure contains the same number of moles. Thus volume (v) is directly proportional to moles (n).

Boyle's Law:

```
V \alpha1 (T and n constant)
    p
```


Charles Law:

$\mathrm{V} \propto \mathrm{T}$ (P and n constant).

Avogadro's Law:

$\mathrm{V} \alpha \mathrm{n}$
Then (i), (ii) and (iii) can be generalised as:
$\mathrm{V} \alpha \underset{\mathrm{P}}{\mathrm{T}} \mathrm{T}$
i.e. $\quad V=$ constant $\underline{1}(\mathrm{Tn})$ or
p
PV = constant (Tn)

The proportionality constant is given the symbol R and is called the gas constant.

$$
\begin{aligned}
P V & =n R T \\
R & =\frac{P V}{n T}
\end{aligned}
$$

At s.t.p. and using S.I. units the value of R can be calculated as shown below:

$$
P=101325 \mathrm{Nm}^{-2}
$$

$$
\mathrm{V}=0.0224 \mathrm{dm}^{3}
$$

$\eta=1$ mole (mol)
$\mathrm{T}=273 \mathrm{~K}$
$\therefore \mathrm{R}=101325 \mathrm{Nm}^{-2} \times 0.0224 \mathrm{dm}^{3}$
$1 \mathrm{~mol} \times 273 \mathrm{~K}$
$8.31 \mathrm{Nm}^{-2} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \mathrm{dm}^{3}$
(NB: $\mathrm{Nm}^{-2}=\mathrm{J}$)
$8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
N.B: At s.t.p. and without considering S.I. units

```
    P = 760 mmHg= 1 a.t.m
    V =22.4 l
    n = 1 mol
```

The value and units of R is:

$$
\mathrm{R}=\frac{\mathrm{PV}}{\mathrm{nT}}
$$

$$
=1 \mathrm{~atm} \times 22.4 \mathrm{l}
$$

$$
1 \text { mol x } 273 \text { K }
$$

```
= 8.2057 x 10-2 \ell atm mol -1 K - 
```


Problem:

A carbonate was decomposed to give 11.0 g of carbon dioxide which occupied 10.0 litres at $77^{\circ} \mathrm{C}$. Calculate its pressures ($\mathrm{C}=12.0,0=16.0$)

Solution:

R.F.M. of carbon dioxide $=12.0(2 \times 16.00)$

$$
=44
$$

\therefore Molar mass of carbon dioxide $=44 \mathrm{~g} \mathrm{~mol}^{-1}$
\therefore Moles of carbon dioxide $\quad=11.0 \mathrm{~g}$
$44 \mathrm{gmol}^{-1}$
$=0.25 \mathrm{~mol}$

Using the equation of state

$$
\begin{aligned}
& \mathrm{PV}=\mathrm{nRT} \\
& \mathrm{P}=\mathrm{n} \underline{\mathrm{RT}} \\
& \mathrm{~V} \\
& \mathrm{n}=0.25 \mathrm{~mol} \\
& \mathrm{~T}=77+273=350 \mathrm{~K} \\
& \mathrm{R}=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\
& \mathrm{~V}=10.0 \mathrm{dm}^{3} \\
& \mathrm{P}=0.25 \mathrm{~mol}^{2} 8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \mathrm{dm}^{3} \times 350 \mathrm{~K}
\end{aligned}
$$

```
10.0 dm 3
= 7.27 x 104 Nm-2}\quad(J=\mp@subsup{Nm}{}{-2}
```


GRAHAM'S LAW OF DIFFUSION

This law states that at constant temperature and pressure the rate (R) of diffusion of a gas is inversely proportional to the square root of its density (d).
N.B. The different formulae relating to the above law are easily derived as it will be shown in the problems and solutions that follow.

```
Thus \(\mathrm{R} \propto 1 \quad\left(\mathrm{R}=\right.\) rate of diffusion in \(\mathrm{cm}^{3} \mathrm{~s}^{-1}\)
```

$$
\mathrm{R}=\frac{\mathrm{k}}{\sqrt{\mathrm{~d}}}
$$

If the rates of diffusion of a gas A and B are compared, the equation can be derived as follows:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{A}}=\underline{\underline{k}} \sqrt{\mathrm{~d}_{\mathrm{A}}} \\
& \mathrm{R}_{\underline{B}}=\underline{\mathrm{k}} \\
& \sqrt{d_{B}} \\
& \underset{R_{B}}{R_{A}}=\underset{\sqrt{d_{A}}}{\underline{\mathrm{k}}} \div \underset{\sqrt{d_{B}}}{\underline{\mathrm{k}}} \\
& \underline{\mathrm{R}}_{A}=\underline{\mathrm{k}} \times \underline{\mathrm{d}}_{B} \\
& \text { Chemistry Formulas Book }
\end{aligned}
$$

$R_{B} \quad V_{\mathrm{A}} \quad \mathrm{k}$
$\frac{\mathrm{R}_{A}}{\mathrm{R}_{\mathrm{B}}}=\sqrt{\sqrt{\mathrm{d}_{B}}} \sqrt{\mathrm{~d}_{\mathrm{A}}}$

Problem:

The density of nitrogen gas is $1.2506 \times 10^{-3} \mathrm{~g} \mathrm{~cm}^{-3}$ and that of oxygen gas is $1.4290 \times 10^{-3} \mathrm{~g} \mathrm{~cm}^{-3}$.
(a)Which gas will diffuse faster?
(b)

How many times faster will the gas you have given in (a) above

Solution:

(a)Nitrogen gas which has got a lower density will diffuse faster than oxygen.
(b)

$$
\underline{\mathrm{RN}_{2}}=\sqrt{ } \underline{\mathrm{dO}_{2}}=\sqrt{ } \underline{1.4290}=\sqrt{ } 1.14427
$$

$\begin{array}{lll}\mathrm{RO}_{2} & \mathrm{dN}_{2} & \sqrt{ } 1.2506\end{array}$
= 1.0689
N.B. If equal volumes of gases A and B diffuse the rates of diffusion are inversely proportional to the time of diffusion.

$\mathrm{T}_{\mathrm{A}} \propto \underset{1}{1}$	$\therefore \mathrm{~T}_{\mathrm{A}}=\underline{\mathrm{k}}$
R_{A}	
$\mathrm{T}_{\mathrm{B}} \propto \mathrm{I}$	$\therefore \mathrm{R}_{\mathrm{A}}=\underline{\mathrm{k}}$
R_{B}	
R_{B}	

$\frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{B}}}=\frac{\mathrm{k}}{\mathrm{R}_{\mathrm{A}}} \div \frac{\mathrm{k}}{\mathrm{R}_{\mathrm{B}}}$
$\underset{\text { Chemistry Formulas }}{\mathrm{T}_{\mathrm{A}}}=\mathrm{k} \quad \mathrm{x} \quad \underset{\mathrm{B}}{ } \quad \underset{\mathrm{R}}{ }$

```
TB}\quad\mp@subsup{R}{A}{}\quad
T
Note: R}\mp@subsup{\textrm{R}}{\textrm{A}}{}=\underline{\textrm{k}}\mathrm{ and
        Vd
RB}=\frac{\underline{k}}{\sqrt{}{\mp@subsup{d}{A}{}}
\therefore\frac{T}{A}
    = =
        \therefore 簲
```


Problem:

A sample of hydrogen gas density 1 diffused in 82 seconds. The same volume of air diffused in 310 seconds. How many times is air denser than hydrogen.

Solution:

Using the Graham's Law of diffusion:
$\underline{T}_{A}=\sqrt{\mathrm{d}_{A}}$
$T_{B} \quad V_{B} \quad$ Let A be hydrogen, B be air
Square both sides:

$$
\begin{aligned}
& \left(\frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{~T}_{\mathrm{B}}}\right)^{2}=\left(\sqrt{\frac{\sqrt{ } \mathrm{d}_{\mathrm{A}}}{\sqrt{\mathrm{~d}_{\mathrm{B}}}}{ }^{2}}\right. \\
& \left(\frac{\mathrm{TH}_{2}}{\mathrm{~T}_{\text {Air }}}{ }^{2}=\frac{\mathrm{dH}_{2}}{\mathrm{~d}_{\text {Air }}}\right. \\
& \frac{82 \times 82}{310 \times 310}=\quad \frac{1}{\mathrm{~d}_{\text {Air }}} \\
& \mathrm{d}_{\text {Air }}=\frac{1 \times 310 \times 310}{82 \times 82} \\
& =\underline{14.29 \text { times }}
\end{aligned}
$$

When molecular mass is considered in relation to Graham's Law of Diffusion, the rate of diffusion of a gas is inversely proportional to the square root of its molecular mass.
$\mathrm{R}_{\mathrm{A}} \alpha \quad \stackrel{1}{\sqrt{\mathrm{M}_{\mathrm{A}}}}$
$\mathrm{R}_{\mathrm{A}}=\underset{\sqrt{\mathrm{k}}}{\mathrm{M}_{\mathrm{A}}}$
$\mathrm{R}_{\mathrm{B}} \quad \frac{\alpha 1}{\mathrm{M}_{\mathrm{B}}}$
$\mathrm{R}_{\mathrm{B}}=\underline{\mathrm{k}}$
Chemistry Formulas Book
$\sqrt{ } \mathrm{M}_{\mathrm{B}}$

$$
\begin{aligned}
\frac{\mathrm{R}_{A}}{\mathrm{R}_{\mathrm{B}}} & =\underline{\mathrm{k}} \div \underline{\sqrt{M_{A}}} \div \sqrt{M_{B}} \\
& =\underset{\sqrt{M_{A}}}{\underline{\mathrm{k}}} \times \frac{\sqrt{M_{B}}}{\mathrm{k}} \\
\underline{R_{A}} & =\sqrt{\mathrm{R}_{\mathrm{B}}} \underline{\mathrm{M}}_{\underline{B}}
\end{aligned}
$$

Problem:

A given volume of oxygen takes 120 seconds to diffuse. Calculate the molar mass of gas B if the same volume diffuses in 90 seconds. $(0=16.0)$

Solution:

From Graham's Law of diffusion
$\frac{R_{A}}{R_{B}}=\frac{\sqrt{d_{B}}}{\sqrt{d_{A}}}$
$\frac{\mathrm{T}_{A}}{\mathrm{~T}_{\mathrm{B}}}=\sqrt{\sqrt{ }} \frac{\mathrm{d}_{A}}{\mathrm{~d}_{\mathrm{B}}}$
$\frac{\mathrm{R}_{\mathrm{A}}}{\mathrm{R}_{\mathrm{B}}}=\sqrt{\sqrt{\mathrm{M}_{B}}} \sqrt{\mathrm{M}_{\mathrm{A}}}$
N.B. The question refers to the relationship between time of diffusion and molecular mass (1) and (2) show that molecular mass of a gas b directly proportional to its density.

From (1)
$\frac{R_{A}}{R_{B}} \quad \frac{\sqrt{ } \mathrm{~d}_{B}}{\sqrt{\mathrm{~d}_{A}}}$
$\therefore \frac{\mathrm{R}_{B}}{\mathrm{R}_{\mathrm{A}}} \frac{\sqrt{\mathrm{d}_{A}}}{\sqrt{ } \mathrm{~d}_{\mathrm{B}}}$
From (3) $\frac{\mathrm{R}_{A}}{\mathrm{R}_{\mathrm{B}}}=\underset{\sqrt{M_{A}}}{\underline{M_{B}}}$
$\therefore \frac{\mathrm{R}_{B}}{\mathrm{R}_{A}}=\frac{\mathrm{M}_{A}}{\mathrm{M}_{\mathrm{B}}}$.

It follows from 4 and 5 that:

But from (2)
$\underline{T}_{A}=\underline{d}_{A}$
$\mathrm{T}_{\mathrm{B}} \quad \mathrm{d}_{\mathrm{B}}$

```
and from (6)
V\sqrt{}{|}\mp@subsup{\underline{d}}{A}{\prime}}=\sqrt{V}{\sqrt{}{\mp@subsup{M}{A}{\prime}}
```

 \(=\underline{T}_{A}=\sqrt{ } \underline{M}_{a}\)
 $\mathrm{T}_{\mathrm{B}} \quad V_{\mathrm{M}}$
Squaring both sides
$\underline{T}_{\Delta}{ }^{2}=\underline{M}_{A}$
$\mathrm{T}_{\mathrm{B}} \quad \mathrm{M}_{\mathrm{B}}$
Substitution (A) for oxygen and (B) for the unknown gas.
$M_{B}=M_{A}(x) \frac{T_{B}}{T_{A}}{ }^{2}$
$=32(\mathrm{x}) \frac{90}{20}^{2}$
$32 \times 3 / 42$
$=32 \times \underline{9}$
16
$=\underline{18}$
The molar mass of $\mathrm{B}=18 \mathrm{gmol}^{-1}$

Problem:

Some cotton wool was soaked into concentrated hydrochloric acid and another one soaked into concentrated X solution and were placed at different ends of a
$99-\mathrm{cm}$ long glass tube. After some time a white solid was formed at 55 cm from concentrated hydrochloric acid and 44 cm from X . Calculate relative molecular mass of X . $[\mathrm{H}=1, \mathrm{Cl}=35.5$].

Solution:

The length L by HCl and X when diffusing depend on the relative molecular mass and therefore inversely proportional to the square root of molecular
mass - Graham's law of diffusion.

$$
\begin{aligned}
& \mathrm{LHCL} \propto \frac{1}{\sqrt{\mathrm{M}_{\mathrm{H}}} \mathrm{Cl}} \\
& \mathrm{~L} \mathrm{HCl}=\frac{\mathrm{k}}{\sqrt{\mathrm{M}}} \\
& \text { Lx } \propto 1 \\
& \sqrt{ } \mathrm{Mx}_{\mathrm{x}} \\
& \mathrm{Lx}=\underline{\mathrm{k}} \\
& \sqrt{ }{ }^{M x} \\
& \begin{array}{lll}
\underline{\mathrm{LHCl}} & =\underset{\mathrm{k}}{\underline{\mathrm{k}}} \div \frac{\underline{\mathrm{k}}}{\mathrm{M}_{\mathrm{HCl}}} \quad \mathrm{M}_{\mathrm{X}}
\end{array} \\
& \frac{\mathrm{LHCl}}{\mathrm{Lx}}=\frac{\sqrt{\mathrm{M}_{\mathrm{X}}}}{\sqrt{\mathrm{M}_{\mathrm{HCl}}}} \\
& \underline{55}=\sqrt{ } \underline{M_{X}} \\
& 44 \sqrt{36.5} \\
& \left(\frac{55}{44}\right)^{2}=\frac{M_{x}}{36.5} \\
& M_{x}=\underline{55 \times 55 \times 36.5} \\
& 44 \times 44
\end{aligned}
$$

$=\underline{57.03}$

TEMPERATURE SCALES:

CELSIUS SCALE:

This has been very widely used and originated in 1742 after a Swedish astronomer, Anders Celsius (1701-44). The upper fixed point is the boiling point of water called $100^{\circ} \mathrm{C}$ and the lower one is the melting point called $0^{\circ} \mathrm{C}$ at $101325 \mathrm{Nm}^{-2}$ (or 1 atmosphere 760 mmHg) One hundredth of the interval between these two points is called a degree Celsius ($1^{\circ} \mathrm{C}$).

ABSOLUTE OR KELVIN SCALE

The temperature, at which all gases would theoretically have Zero volume, is absolute Zero. This temperature in Celsius scale is about $-273^{\circ} \mathrm{C}$ which is theoretically the lowest possible temperature but in practice we cannot reduce the temperature of a gas to absolute Zero because all gases liquify above this temperature.

The scale which has $-273^{\circ} \mathrm{C}$ as zero is called thermodynamic scale or commonly known as Kelvin Scale invented by William Thomson 1824-1907, a British Physicist who was the baron of Kelvin. Degrees Celsius are converted to Kelvin symbol K with no degrees sign by adding 273.

Temperature in $\mathrm{K}=$ Temperature in ${ }^{0} \mathrm{C}+273$

Problem:

Convert (i) $25^{\circ} \mathrm{C}$ to Kelvin
(ii) 373 K to Celsius

Solution:

(i) $\mathrm{K}={ }^{\circ} \mathrm{C}+273$

Chemistry Formulas Book

$$
\begin{gathered}
\mathrm{K}=25+273 \\
\mathrm{~K}=298 \mathrm{~K}
\end{gathered}
$$

(ii) $\mathrm{K}={ }^{\circ} \mathrm{C}+273$
${ }^{0} \mathrm{C}=\mathrm{K}-273$
$=373-273$

$$
=100^{\circ} \mathrm{C}
$$

pH VALUES

The mathematical definition of pH is the negative logarithm to base ten of the molar hydrogen ions concentration. This scale was suggested by S \varnothing rensen; in 1909.
$\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]$
[] indicates concentration and P stands for potenz, meaning strength.

Problem 1:

What is the pH of:
(i) 0.01 M hydrochloric acid
(ii) 0.02 M hydrochloric acid
(i) $\left.\mathrm{pH}=-\log _{10} \mathrm{H}^{+}\right]$
$\mathrm{pH}=-\log _{10} 0.01$
$=-\log _{10}\left(1.0 \times 10^{-2}\right)$
$=-(-2) \log _{10} 10$
$=2 \log _{10} 10$
$=2 \times 1$
$=\underline{2}$
(ii) $\mathrm{pH}=-\log _{10}[\mathrm{H}+]$

Chemistry Formulas Book

```
= - Log }\mp@subsup{}{10}{0.02
=-Log }10(2.0 x 10-2
= - Log }10(2.010-2
= - - Log}10 2-\mp@subsup{\operatorname{Log}}{10}{}1\mp@subsup{0}{}{-2
= - Log 10 2-(-2 Log}1010
=-Log}\mp@subsup{}{10}{2}+2 2 Log 101
= -0.3010 + 2
= 1.699
```


Problem 2:

A solution of carbon dioxide has hydrogen ions concentrations of $1.3 \times 10^{-4} \mathrm{M}$. Find its pH .

Solution:

```
\(\mathrm{pH}=-\log { }_{10}\left[\mathrm{H}^{+}\right]\)
    \(=-\log _{10}\left(1.3 \times 10^{-4}\right)\)
    \(=-\log _{10}\left(1.3+\log _{10} 10^{-4}\right)\)
    \(=-\log _{10} 1.3-\log _{10} 10^{-4}\)
    \(=-\log _{10} 1.3+4 \log _{10} 10\)
    \(=0.11+4\)
    \(=\underline{3.89}\)
```


Problems 3:

Find the concentration of H^{+}of a solution of pH 4.5 .

Solution:

```
pH = - Log }\mp@subsup{}{10}{[0}[\mp@subsup{\textrm{H}}{}{+}
```

$4.5=-\log _{10}[\mathrm{H}+]$ or
$-\log _{10}\left[\mathrm{H}^{+}\right]=4.5$

```
[H+}]=10-4.
[H+}=1\mp@subsup{0}{}{0.5}\times1\mp@subsup{0}{}{-5
[H+}]=3.2\times1\mp@subsup{0}{}{-5
```

N.B: $-4.5=0.5-5$

ENTHALPY CHANGES

$\Delta \mathrm{H}=\mathrm{MC} \Delta \mathrm{T}$
$\Delta \mathrm{H}$ is negative when the reaction is exothermic - heat lost.
$\Delta \mathrm{H}$ is positive when the reaction is endothermic - heat gained.
C is specific heat capacity of water and is given as $4.2 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$
T is change in temperature in ${ }^{\circ} \mathrm{C}$.
M is mass.
N.B. When using the formula appropriate units must be used e.g. if C is given as $4.2 \mathrm{KJ} \mathrm{kg}^{-1}{ }^{0} \mathrm{C}^{-1}$, mass. (M) must be converted to kg if given in grams.

Problem:

In an experiment $20.0 \mathrm{~cm}^{3}$ of 2 M NaOH completely neutralized $15.5 \mathrm{~cm}^{3}$ of a dibasic acid. Calculate the heat of neutralization if the change in temperature was $6.3^{\circ} \mathrm{C}$. (Given the density of solutions as $1 \mathrm{gcm}^{-3}$ and specific heat capacity of water as $4.2 \mathrm{KJ} \mathrm{kg}^{-10} \mathrm{C}^{-1}$

Solution:

First step:

To calculate moles of NaOH and hence moles of the dibasic acid used.
Molarity of $\mathrm{NaOH}=2 \mathrm{M}$
$1000 \mathrm{~cm}^{3}$ Contains 2 moles
Chemistry Formulas Book

$1 \mathrm{~cm}^{3}$ Contains $\underline{2 \mathrm{~mol}}$ $10^{3} \mathrm{~cm}^{3}$

$20.0 \mathrm{~cm}^{3}$ will contain $\underline{2 \mathrm{~mol} \times 20.0 \mathrm{~cm}^{3}}$

$$
10^{3} \mathrm{~cm}^{3}
$$

$=0.04 \mathrm{~mol}$.
The equation of sodium hydroxide and the dibasic acid is:

$$
\mathrm{H}_{2} \mathrm{X}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \quad \mathrm{Na}_{2} \mathrm{X}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The ratio of $\mathrm{H}_{2} \mathrm{X}$: NaOH

$$
1: 2
$$

The moles of dibasic acid $=\underline{0.04}$

$$
\begin{gathered}
2 \\
=\underline{0.02 \mathrm{~mol}} .
\end{gathered}
$$

Second Step:

To calculate the molar heat of neutralization of the reaction
Total Volume of solution $=(20.1+15.5) \mathrm{cm}^{3}$

$$
=35.5 \mathrm{~cm}^{3}
$$

Density of solution $=1 \mathrm{~g} \mathrm{~cm}^{-3}$
\therefore Mass of solution $=35.5 \mathrm{~cm}^{3} \times 1 \mathrm{gcm}^{-3}$
$=35.5 \mathrm{~g}=35.5 \times 10^{-3} \mathrm{~kg}$
$\Delta \mathrm{H}=\mathrm{MC} \Delta \mathrm{T}$

- $35.5 \times 10^{-3} \mathrm{~kg}^{2} 4.2 \mathrm{KJkg}^{-10} \mathrm{C}^{-1} \times 6.3 \mathrm{~K}$
$=0.9393 \mathrm{KJ}$
0.02
mol give 0.9393 KJ

$$
1, \mathrm{~mol} \text { will give }=\frac{0.9393 \mathrm{KJ}}{0.02 \mathrm{~mol}}
$$

$$
=-46.97 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Heat is given off when an acid neutralizes a base.

$$
\therefore \Delta \mathrm{H}=-46.97 \mathrm{KJ} \mathrm{~mol}^{-1}
$$

FARADAY'S LAW OF ELECTROLYSIS

Important terminologies to remember:
(i) Current (I) measured in amperes (A). This is a unit of current strength
(ii) Volt (V): This is a measure of potential difference
(iii) Coulomb (C): This is a measure of the quantity of electricity.

The relationship between coulombs, current and time is shown by the following equation.
Coulomb $=$ current (ampere) x time (seconds)

$$
\mathrm{C}=\mathrm{It} .
$$

A coulomb is the quantity of electricity passing when 1 ampere flows for 1 second through an electrolyte.

FARADAY'S FIRST LAW OF ELECTROLYSIS.

The mass (M) of substance liberated during electrolysis is directly proportional to the quantity of electricity passed through the solution.

M α It
M = KIt

K is a constant given as E and it is an important quantity for any element, and is known as electrical equivalent.

$$
\begin{aligned}
& M=E I t \\
& E=\frac{M}{I t}
\end{aligned}
$$

If M is in grams then the units for E is g / C or gc^{-1} i.e. gram / coulomb of electricity is passed through an electrolyte.

Problem 1:

What is the quantity of electricity that is produced when a current of 0.20 A pass through a solution for 30 minutes.

Solution 1:

$\mathrm{C}=\mathrm{It}$

$$
\begin{aligned}
& =0.20 \mathrm{~A} \times 30 \times 60 \mathrm{~s} \\
& =360 \text { coulombs }
\end{aligned}
$$

Problem 2:

How much current will pass through a solution for 10 minutes to produce 300 coulombs of electricity?

Solution 2:

$\mathrm{C}=\mathrm{It}$
$I=\underline{C}$
t
$=300 \mathrm{C}$
$10 \times 60 \mathrm{~s}$
$=0.5 \mathrm{C}$
s
$=\underline{0.5 \mathrm{~A}}$

Problem 3:

Calculate the quantity of electricity required to liberate 1 mole of copper if the electrochemical equivalent of copper is $3.290 \times 10^{-4} \mathrm{~g} \mathrm{C}^{-1}[\mathrm{Cu}=63.5]$

Solution 3:

$$
E=\frac{M}{I t}
$$

Molar mass of copper $=63.5 \mathrm{~g} \mathrm{~mol}^{-1} \mathrm{E}$ is electrochemical equivalent
$=3.290 \times 10^{-4} \mathrm{~g} \mathrm{C}^{-1} \mathrm{It}=$ quantity of electricity $=$ coulombs (C)

$$
\begin{aligned}
\therefore \quad E & =\underline{M} \\
C & =\frac{M}{E} \\
& =\underline{63.5 \mathrm{~g} \mathrm{~mol}^{-1}} \\
& 3.290 \times 10^{-4} \mathrm{~g} \mathrm{C}^{-1} \\
& =\underline{193009 \mathrm{C} \mathrm{~mol}^{-1}}
\end{aligned}
$$

FARADAY'S SECOND LAW OF ELECTROLYSIS.

When the same quantity of electricity is passed through solutions of different electrolytes, the masses of the substances liberated are proportional to their chemical equivalents or in simple terms one mole of various atoms liberated by one or more moles of electrons.

Faraday's constant

A faraday is the quantity of electricity required to deposit 1 mole of a substance.

Example:

The electrochemical equivalent of silver is $0.001118 \mathrm{gC}^{-1}$ and molar mass of silver is $107.880 \mathrm{~g} \mathrm{~mol}^{-1}$.
If 0.001118 g of silver is deposited by 1 coulomb of electricity then:
The quantity of electricity (coulombs) required to deposit one mole of silver (107.880 g) is:

$$
\begin{aligned}
& \frac{107.880 \mathrm{~g} \mathrm{~mol}^{-1}}{0.001118 \mathrm{~g} \mathrm{C}^{-1}} \\
& \cong \underline{96500 \mathrm{C}}
\end{aligned}
$$

N.B: A Faraday $(F)=96500$ coulombs is the charge on 1 mole of electrons.

The charge on: 1 mole of Ag^{+}is 1 F
1 mole of Cu^{2+} is 2 F
1 mole of Fe^{3+} is 3 F
Therefore to liberate 1 mole of Ag, Cu and Fe is 1,2,3, Faraday's are needed respectively in accordance with Faraday's Second Law.

Problem 1

What is the charge on one electron?

Solution 1:

Charge for 1 mole of electrons $=96500 \mathrm{C} \mathrm{mol}^{-1}$
1 mole of electrons $=6.02 \times 10^{23}$ electrons mol^{-1}
Charge on an electron $=\underline{96500 \mathrm{C} \mathrm{mol}^{-1}}$ 6.02×10^{23} electron mol^{-1}

```
= 1.6 x 10-19 coulombs electron -1
= 1.6 x 10-19 Ce-1
```


Problem 2:

0.1184 g of Copper is deposited when a current of 2 A is passed for 180 seconds. What is the copper ion involved? (Show the working)

1 Faraday = 96500 coulombs
Molar mass of copper $=64 \mathrm{~g} \mathrm{~mol}^{-1}$

Solution 2:

First step:

Calculation to find the number of faradays used

$$
\begin{aligned}
C & =1 \mathrm{t} \\
1 & =2 \mathrm{~A} \text { and } \mathrm{t}=180 \mathrm{~s} \\
\mathrm{C} & =2 \mathrm{~A} \times 180 \mathrm{~s} \\
& =360 \mathrm{As} \\
& =360 \text { coulombs }
\end{aligned}
$$

Faradays $=\underline{C}$

$$
96500
$$

$=360 \mathrm{C}$
96500 C
$=0.00373 \mathrm{~F}$

Second step:

Calculation of the moles of copper deposited. Mass of copper deposited
$=0.1184 \mathrm{~g}$.

Molar mass of copper $=64 \mathrm{~g} \mathrm{~mol}^{-1}$
Moles of copper $\quad=\underline{0.1184 g}$

$$
64 \mathrm{~g} \mathrm{~mol}^{-1}
$$

$$
=\underline{0.00185 \mathrm{~mol}}
$$

Third step:

Calculation of the charge on copper.
0.00185 mole of copper deposited by 0.00373 F

1 mole of copper will be deposited by:

$$
\begin{aligned}
& \frac{0.00373 \mathrm{~F}-\mathrm{x} 1 \mathrm{~mol}}{0.00185 \mathrm{~mol}} \\
& =2.016 \mathrm{~F} \\
& \approx \underline{2 \mathrm{~F}}
\end{aligned}
$$

This shows that 2 moles of electrons or 2 F of electrons were involved to deposit 1 mole of copper.
\therefore The copper ion involved was Copper (II) thus Cu^{2+}

Problem 3:

Two molten salts were electrolysed in a series. One salt was mercury (II) bromine and the other was a salt of an unknown metal M . In the time taken to deposit 4 g of mercury only 0.6 g of metal M was produced. Calculate the charge on the ion of $\mathrm{M} . \mathrm{Hg}=200, \mathrm{M}=60$.

Solution 3:

$\mathrm{HgBr}_{2}(\ell) \longrightarrow \quad \mathrm{Hg}^{2+}(\ell)+2 \mathrm{Br}^{-}(\ell)$ equation 1
$\mathrm{Hg}^{2+}(\ell)+2 \mathrm{e}^{-} \quad \mathrm{Hg}(\ell)$ equation 2
Chemistry Formulas Book

Step I:

To find the number of Faraday's used:
Mass of mercury $\quad=4 \mathrm{~g}$
Molar mass of mercury $=200 \mathrm{~mol}^{-1}$
Moles of mercury $=4 \mathrm{~g}$
$200 \mathrm{~g} \mathrm{~mol}^{-1}$
$=0.02 \mathrm{~mol}$
From equation (2)
1 mole of Hg needs 2 F
$\therefore 0.02$ mole of Hg will need 2 Fx 0.02 mol
1 mol
$=\underline{0.04 \mathrm{~F}}$
$\therefore 0.04 \mathrm{~F}$ were used during electrolysis of the two salts as per question.

Step 2:

To calculate the charge on M .
Mass of metal M $\quad=0.6 \mathrm{~g}$
Molar mass of M $\quad=60 \mathrm{~g} \mathrm{~mol}^{-1}$
\therefore moles of M $\quad=\underline{0.6 \mathrm{~g}}$
$60 \mathrm{~g} \mathrm{~mol}^{-1}$
$=\underline{0.01 \mathrm{~mol}}$
mol of M was deposited by 0.04 F
$\therefore 1 \mathrm{~mol}$ of M would be deposited by $\underline{0.04 \mathrm{~F} \mathrm{x} 1 \mathrm{~mol}}$
0.01 mol
$=\underline{4 \mathrm{~F}}$
$\therefore \mathrm{M}^{4+}(\ell)+4 \mathrm{e} \longrightarrow \quad \mathrm{M}(\ell)$
\therefore The charge on the ion of M is 4^{+}and thus M^{4+}
Chemistry Formulas Book

EINSTEIN'S MASS - ENERGY EQUATION

It can be recalled when Dalton almost convinced everybody that matter can neither be created nor destroyed, but he was almost right and for most purposes this is so especially during chemical reactions.

In 1905 Albert Einstein showed that matter can be converted into energy and vice versa through his famous equation which shows the relationship between energy and matter.
$\mathrm{E}=\mathrm{MC}^{2}$ Where: -
E = Energy liberated in joules
$\mathrm{M}=$ Loss of mass in kilograms
$C=$ Velocity of light in metres per second ($3.0 \times 10^{8} \mathrm{mg}^{-1}$)

Problem

What would be the energy if a mole of uranium - 235 was used up in a nuclear reaction?

Solution

Molar mass of Uranium - $235=235 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass in $\mathrm{kg}=\frac{235}{10^{3}} \mathrm{~kg}$

```
C=3.0 x 108 ms-1
    E = MC'
    = 235kg x (3.0 x 108 ms-1)
        103
    = 2.115 x 1016 kgm2 's
    = 2.115\times1016 J
```


HYDROCARBONS

Simple homologous hydrocarbons such as alkanes, alkenes, alkenes and alkynes are each represented by a simple formula.

1. Alkanes:
$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$ ($\mathrm{n}=$ the number of carbon atoms)
2. Alkenes
$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$ ($\mathrm{n}=$ the number of carbon atoms)
3. Alkynes

$$
\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2}(\mathrm{n}=2,3,4, \ldots \text { etc. })
$$

Problem:

Give the molecular formula, structural formula and name for each of the three groups above when $\mathrm{n}=3$.

Solution:

ALKANES
$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}(\mathrm{n}=3)$
(i) Molecular formula is:
$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$
$\mathrm{C}_{3} \mathrm{H}(2 \times 3)+2$
$\underline{\mathrm{C}}_{3} \underline{H}_{8}$
(ii). Structural formula of $\mathrm{C}_{3} \mathrm{H}_{8}$ is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$

Chemistry Formulas Book
(iii) Name is Propane

ALKENES:

$$
\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}} \quad(\mathrm{n}=3)
$$

(i) Molecular formula is:
$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$
$\mathrm{C}_{3} \mathrm{H}_{2 \times 3}$
$\underline{\mathrm{C}}_{3} \underline{H}_{6}$
(ii) Structural formula of $\mathrm{C}_{3} \mathrm{H}_{6}$ is: $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}$
(iii) Name is Prop - 1 - ene

ALKYNES.

$$
\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}-2 \quad(\mathrm{n}=3)
$$

i) Molecular formula is:
$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2}$
$\mathrm{C}_{3} \mathrm{H}_{2} \times 3$) -2
$\underline{\underline{C}}_{3} \underline{\underline{H}}_{4}$
ii) Structural formula of $\mathrm{C}_{3} \mathrm{H}_{4}$ is:
$\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH}$
iii) Name is Prop - 1 - yne

ALKANOLS:

These are the alcohols and they can be represented by a general formula of:

$$
\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2} \mathrm{O} \text { or } \mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+1} \mathrm{OH}
$$

Problem:

Give the molecular formula, straight chain or structural formula and name of the alcohol when $n=4$.

Solution:

General formula is $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+1} \mathrm{OH}$ or $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2} \mathrm{O}$
(i) Molecular formula is:

$$
\mathrm{C}_{4} \mathrm{H}(2 \times 4)+1 \mathrm{OH} \text { or } \mathrm{C}_{4} \mathrm{H}_{(2 \times 4)}+2 \mathrm{O}
$$

$$
\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH} \text { or } \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}
$$

(ii) Structural formula of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$ or $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ is
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(iii) Name is Butanol or Butan - 1 - ol.

VOLUMETRIC ANALYSIS

The main objective of volumetric analysis is to determine the amount of a substance in a given sample. When dealing with volumetric analysis the concept of concentration cannot be avoided. Molarity i.e. moles per litre or decimeter is widely used unit of concentration.

Molarity $=\underline{\text { moles }}$ ie molarity $=\underline{\text { moles }}$
litre litre
N.B. Unit for molarity is M i.e. molar

Problem:

What is the molarity of sodium hydroxide solution when 4 g are dissolved to make $250 \mathrm{~cm}^{3}$. ($\mathrm{Na}=23.0,0=16.0, \mathrm{H}=$ 1.0)

Solution:

Mass of $\mathrm{NaOH}=4 \mathrm{~g}$
R.F.M. of $\mathrm{NaOH}=23+16+1$

$$
=40
$$

Molar mass of $\mathrm{NaOH}=40 \mathrm{~g} \mathrm{~mol}^{-1}$
$\begin{aligned} & \text { Moles of } \mathrm{NaOH}=4 \mathrm{~g} \\ & 40 \mathrm{~g} \mathrm{~mol}-1 \\ &=0.1 \mathrm{~mol}\end{aligned}$
Molarity $=\underline{\text { moles }}$ ie molarity $=\underline{\text { moles }}$ litre litre

Volume of $\mathrm{NaOH}=250 \mathrm{~cm}^{3}=250=0.25 \ell$
1000
Molarity of $\mathrm{NaOH}=\underline{0.1 \mathrm{~mol}}$

$$
0.25 \ell
$$

$$
=0.4 \mathrm{~mol} / \ell
$$

$$
=\underline{0.4 \mathrm{M}}
$$

DILUTING A SOLUTION:

When a solution of a known concentration is diluted it is possible to apply a simple formula to calculate whatever is unknown.

Molarity x Volume $=$ Molarity x volume
(original) (diluted)
Let: Original morality $\quad=\mathrm{M}_{1}$
Original volume $=\mathrm{V}_{1}$
Diluted Molarity $\quad=\mathrm{M}_{2}$
Diluted Volume $\quad=\mathrm{V}_{2}$
Thus: $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$

Problem:

$100 \mathrm{~cm}^{2}$ of 2 M HCl was diluted to $250 \mathrm{~cm}^{3}$, What is the molarity of the diluted solution?

Solution:

Let: $\quad \mathrm{M}_{1} \quad=$ Molarity of original HCl
$\mathrm{V}_{1} \quad=$ Volume of original HCl
$\mathrm{M}_{2}=$ Molarity of diluted HCl
$\mathrm{V}_{2} \quad=$ Volume of diluted HCl
$\therefore \mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \quad$ let:
Chemistry Formulas Book

$$
\begin{array}{rlrl}
\mathrm{M}_{2} & =\frac{\mathrm{M}_{1} \underline{V}_{1}}{\mathrm{~V}_{2}} & \begin{array}{l}
\mathrm{M}_{1}=2 \mathrm{M} \\
\\
\end{array} & \begin{array}{l}
\mathrm{M}_{2}=?
\end{array} \\
& =0.8 \mathrm{M} \times 100 \mathrm{~cm}^{3} & & \mathrm{~V}_{1}=100 \mathrm{~cm}^{3} \\
& V_{1}=250 \mathrm{~cm}^{3}
\end{array}
$$

The formula $M_{1} V_{1}=M_{2} V_{2}$ can be modified slightly to be applied for a reaction in which 1 mole of an acid reacts with 1 mole or 2 moles of an alkali (a base) or a carbonate.

Case 1: Mole ratio of acid: mole ratio of alkali $/$ base $=1: 1$

Problem:

In a titration reaction $25 \mathrm{~cm}^{3}$ of 0.1 M HCl neutralized $20 \mathrm{~cm}^{3}$ of NaOH . Calculate the concentration of the alkali in moles per litre.

Solution:

Equation for the reaction:
$\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}(\ell)$
Moles HClC_{1} : \quad Moles of $\mathrm{NaOH}=1: 1$

Let:

$\frac{\mathrm{M}_{\mathrm{a}} \mathrm{V}_{\mathrm{a}}}{\mathrm{M}_{\mathrm{b}} \mathrm{V}_{\mathrm{b}}}=\frac{1}{1} \quad \begin{aligned} & \mathrm{M}_{\mathrm{a}}=\text { Molarity of acid }=0.1 \mathrm{M} \\ & \mathrm{M}_{\mathrm{b}}=\text { Molarity of }\end{aligned}$
$\mathrm{M}_{\mathrm{b}} \mathrm{V}_{\mathrm{b}} \quad 1 \quad \mathrm{M}_{\mathrm{b}}=$ Molarity of base = ?

$\mathrm{Mb}=\underline{\mathrm{M}}_{\mathrm{a}} \underline{\mathrm{V}}_{\mathrm{a}}$
Chemistry Formulas Book

```
    Vb
= 0.1 M x 25 cm}\mp@subsup{}{}{3
= 0.125 M
```

Case 2: Mole ratio of acid: mole ratio of a base $=2: 1$

Problem:

$15 \mathrm{~cm}^{3}$ of $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ reacted completely with $20 \mathrm{~cm}^{3}$ of HCl . Calculate the moles of HCl used.

Solution:

$2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \quad \mathrm{NaCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)$

$=\frac{2 \times 0.1 \times 15 \mathrm{~cm}^{3}}{20}$
$20 \mathrm{~cm}^{3}$
$=0.15 \mathrm{M}$
Molarity $(M)=\underline{\text { moles }}$
litre

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{a}}=20 \times 10^{-3} \ell \\
& \mathrm{M}=0.15 \mathrm{M}
\end{aligned}
$$

\therefore moles $=$ molarity x litre
\therefore moles of $\mathrm{HCl}=0.15 \mathrm{~mol} \ell^{-1} \times 20 \times 10^{-3} \ell$

$$
=\underline{3 \times 10^{-3} \mathrm{~mol}} \text { i.e } \underline{0.003 \mathrm{~mol}}
$$

N.B.: It is important to note that these calculations are easily done using first principles method from which the formulae are derived. A slight omission in the formula leads to wrong answers which may also look very unrealistic.

To determine the number of water of crystallization in a hydrated salt:

A number of methods may be applied but the one to consider at this point is that of heating the hydrated salt to a constant mass having removed all the water of crystallization before decomposition takes place if any.

A known mass of hydrated salt $\mathrm{MX} . \mathrm{yH}_{2} \mathrm{O}$ when heated to a constant mass gives the following equation.

```
MX.yH2O (s) \longrightarrow MX (s) + yH2O (\ell)
Mass of MX.yH2O(s) = w g
Mass of MX = a g
Mass of yH2O = (w-a)g
```

Using relative atomic masses

1. R.F.M. of MX can be calculated
2. $\mathrm{yH}_{2} \mathrm{O}$ becomes $\mathrm{y}\left(\right.$ R.F.M. of $\left.\mathrm{H}_{2} \mathrm{O}\right)=\mathrm{y}[(2 \times 1)+16]$

$$
=18 \mathrm{y} .
$$

The following simple relationship can be applied

```
mass of water of crystallization =
18y
    mass of anhydrous salt R.F.M of MX
```

Thus: $\frac{(W-a) g}{a}=\frac{18 y}{\text { R.F.M. of MX }}$

Problem:

34.8 g of hydrated sodium carbonate was strongly heated to a constant mass of 15.9 g .
(a)Calculate the number of water of crystallization in the sample.
(b)

Comment on the value you have got in (a) above.

Solution:

```
a). \(\mathrm{Na}_{2} \mathrm{CO}_{3 .} \cdot \mathrm{yH}_{2} \Theta(\mathrm{~s}) \quad \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{y} \mathrm{H} \mathrm{H}_{2} \mathrm{O}(\ell)\)
    Mass of water of crystallization \(=34.8 \mathrm{~g}-15.9 \mathrm{~g}\)
                    \(=18.9 \mathrm{~g}\)
Mass of anhydrous \(\mathrm{Na}_{2} \mathrm{CO}_{3}=15.9 \mathrm{~g}\)
\(\therefore\) mass of water of crystallization \(=\frac{y H_{2} \mathrm{O}}{\text { R.F.M. of } \mathrm{Na}_{2} \mathrm{CO}_{3}}\)
N.B. R.F.M. of \(\mathrm{Na}_{2} \mathrm{CO}_{3}=(2 \times 23)+12+(3 \times 16)\)
                        = 106
    \(y\left(\right.\) R.F.M. of \(\left.\mathrm{H}_{2} \mathrm{O}\right)=y[(2 \mathrm{x} 1)+16)\)
        \(=18 \mathrm{y}\)
    mass of water of crystallisation \(\quad \underline{18.9 \mathrm{~g}=18 \mathrm{y}}\)
```

```
    mass of anhydrous salt 15.9g 106
\therefore=18.9g = 18y
    15.9g 106
    18.9g x 106 = 15.9g x 18Y
        y=18.9g x 106
                15.9g x }1
                = 7
```


Alternative Method:

```
Na2CO3.yH2O(s)}\quad\mp@subsup{\textrm{Na}}{2}{}\mp@subsup{\textrm{CO}}{3}{}(\textrm{s})+\mp@subsup{\textrm{yH}}{2}{}\textrm{O}(\ell
```

 \(\mathrm{Na}_{2} \mathrm{CO}_{3} \quad: \quad \mathrm{yH}_{2} \mathrm{O}=1: \mathrm{y}\)
 \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) : \(\mathrm{H}_{2} \mathrm{O}\)
 15.9 : 18.9
 15.9 : 18.9
 106 : 18
 \(\underline{0} 15\) : 1.05
 \(\underline{0.15}\) : \(\underline{1.05}\)
 0.15 : 0.15
 1 : 7
 $\therefore \mathrm{y}=7$ and thus $\mathrm{Na}_{2} \mathrm{CO}_{3} .7 \mathrm{H}_{2} \mathrm{O}$
(b) Hydrated sodium carbonate is a decahydrate i.e. $\mathrm{Na}_{2} \mathrm{CO}_{3} .10 \mathrm{H}_{2} \mathrm{O}$

It is an efflorescent i.e. it loses some of its water of crystallization to the atmosphere when exposed to the air and thus a figure less that 10.

PRACTICE QUESTIONS

1. In a chemical reaction a gas produced at 740 mm Hg occupied $600 \mathrm{~cm}^{3}$. Calculate the pressure it would exert if the volume is halved at the same temperature.
2. The temperature and volume of a gas at 700 mm Hg was found to be at $70^{\circ} \mathrm{C}$ and $350 \mathrm{~cm}^{3}$ respectively. Calculate the new temperature if the volume is raised to $400 \mathrm{~cm}^{3}$ at the same pressure.
3. Calculate the volume at s.t.p. of a gas which occupies $257 \mathrm{~cm}^{3}$ at 570 mm Hg and $-16^{\circ} \mathrm{C}$.
4. 2.56 g of Sulphur formed a vapour at $546^{\circ} \mathrm{C}$ and 1 atm , Pressure, which had a volume of $672 \mathrm{~cm}^{3}$ [$\mathrm{S}=32$.]

CALCULATE:
(a)the volume of vapour at 1 atm
(b)
(c) the relative formula of sulphur
(d)

the mass of 22.4ℓ of sulphur vapour at s.t.p.
 the formula of sulphur molecule

5. A sample of 12.25 g of potassium chloride decompose to give oxygen gas.
$2 \mathrm{KClO}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
Calculate the volume of oxygen at s.t.p.
(Given $\mathrm{R}=8.21 \times 10^{-2} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ and $\mathrm{K}=39 . \mathrm{Cl}=35.5, \mathrm{O}=16$)
6. $60 \mathrm{~cm}^{3}$ of oxygen gas diffuse through a porous pot in 10 seconds and $100 \mathrm{~cm}^{3}$ of chlorine diffuse through the same pot in 25 seconds. If the density of Oxygen is 16 times that of hydrogen, what is the density of chlorine compared to hydrogen.
7. 0.2 g of metal was dissolved in dilute acid, and $306 \mathrm{~cm}^{3}$ of dry hydrogen were evolved. The volume of the gas was measured at $20^{\circ} \mathrm{C}$ and 730 mm Hg.
(a)Calculate the volume of the gas at s.t.p.
(b)Why should the temperature be in K or absolute scale: use the formula used in 'a' above to explain.
(c) Calculate the mass of hydrogen if its density at s.t.p. is $0.00009 \mathrm{gcm}^{-3}$
(d)Calculate the equivalent of the metal
(e)Calculate the atomic mass of metal if its valency is 3 .
8. Convert the following as directed.
(a)Degree Celsius to Kelvin
(i) $\quad-13^{\circ} \mathrm{C}$
(ii) $37^{\circ} \mathrm{C}$
(iii) $223^{\circ} \mathrm{C}$
(b)Kelvin to Celsius
(i) 378 K
(ii) 40 K
(iii) 878 K
9. Calculate the amount of heat in joules required to raise the temperature of 50 g of water by $50^{\circ} \mathrm{C}$

$$
\Delta \mathrm{H}=\mathrm{MC} \Delta \mathrm{~T} \text {, Specific heat capacity of water }=4.2 \mathrm{Jg}^{-1}{ }^{0} \mathrm{C}^{-1}
$$

10.

Calculate the molar heat of neutralization in kJ when $500 \mathrm{~cm}^{3}$ of
2M HCl
reacts completely with the same amount and concentration of sodium hydroxide and the temperature rise being $13.7^{\circ} \mathrm{C}$. Take specific heat capacity of solution to be $4.2 \mathrm{Jg}^{-10} \mathrm{C}^{-1}$ and the density of solution to be gcm^{-3}
11.

A steady current of 0.2 A is passed through a circuit for 4825 s .
Calculate the quantity of electricity in coulombs that flows through the circuit.
12.

Calculate the quantity of electricity required to liberate 1 mole of Silver If the electrochemical equivalent of silver is $1.118 \times 10^{-3} \mathrm{gC}^{-1}$ and $\mathrm{Ag}=108$.
13. of Q in presence of powdered nickel give R with Molecular formula $\mathrm{C}_{3} \mathrm{H}_{8}$.
(a)Write the structural formula of R
(b)

(i) Use the following reaction to identify P
(ii) Write down the molecular formula of Q .
(c) Use the following reactions to identify P

Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
(d)
(i) P
(ii) Q
(iii) R
14.
10.6 g of sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ were dissolved to make a
litre solution
($\mathrm{Na}=23, \mathrm{C}=12, \mathrm{O}=16$)
Calculate the molarity of sodium ions.
15.

Calculate:
(i) The volume of 0.1 M HCl that reacts with $25 \mathrm{~cm}^{3}$ of 0.05 M NaOH .
(ii) The molarity of HCl if $25 \mathrm{~cm}^{3}$ react with $100 \mathrm{~cm}^{3}$ of 0.05 M NaOH .
16.
concentration in moles per litre of new solution.
17.
on the laboratory bench.
18.
with $40 \mathrm{~cm}^{3}$ of $0.3 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$
19. In an experiment, 5.85 g of Epsom salt (hydrated magnesium Sulphate -
$\mathrm{MgSO}_{4} \cdot \mathrm{XH}_{2} \mathrm{O}$) was heated to a constant mass of 2.86 g
(a)What is responsible for the decrease in mass?
(b)

Calculate the number of the water of crystallization.

ANSWERS TO PRACTICE QUESTIONS

1. This question is solved using Boyle's Law i.e.

$$
\begin{aligned}
& \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \\
& \mathrm{P}_{1}=740 \mathrm{~mm} \mathrm{Hg} \\
& \mathrm{P}_{2}=? \\
& \mathrm{~V}_{1}=600 \mathrm{~cm}^{3} \\
& \mathrm{~V}_{2}=300 \mathrm{~cm}^{3} \\
& \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \\
& \mathrm{P}_{2} \quad=\underline{\mathrm{P}_{1} V_{1}} \\
& \mathrm{~V}_{2} \\
& \therefore \mathrm{P}_{2}=\underline{740 \mathrm{~mm} \mathrm{Hg} \times 600 \mathrm{~cm}^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& 300 \mathrm{~cm}^{3} \\
& =\underline{1480 \mathrm{~mm} \mathrm{Hg}}
\end{aligned}
$$

2. This is an application of the Charles' Law

$$
\begin{array}{rll}
\underline{\mathrm{V}_{1}} & =\underline{\mathrm{V}_{2}} \\
\mathrm{~T}_{1} & \\
& \\
\mathrm{~V}_{1} & =350 \mathrm{~cm}^{3} & \mathrm{~T}_{1}=70^{\circ} \mathrm{C}=343 \mathrm{~K} \\
\mathrm{~V}_{2} & =400 \mathrm{~cm}^{3} & \mathrm{~T}_{2}=? \\
\underline{\mathrm{~V}_{1}} & =\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \\
\mathrm{~T}_{1} & \\
\mathrm{~T}_{2} & =\frac{\mathrm{V}_{2} \times \mathrm{T}_{1}}{\mathrm{~V}_{1}} & \\
& =\frac{400 \mathrm{~cm}^{3} \times 343 \mathrm{~K}}{350 \mathrm{~cm}^{3}} & \\
& =\underline{392 \mathrm{~K}} \text { i.e. } 1199^{\circ} \mathrm{C}
\end{array}
$$

3. (a) This is an application of the ideal gas equation

$$
\begin{aligned}
& \underline{P}_{1} \underline{V}_{1}-\quad=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \underline{T_{2}} \\
& \mathrm{P}_{1}=570 \mathrm{~mm} \mathrm{Hg}, \mathrm{~V}_{1}=257 \mathrm{~cm}^{3}, \mathrm{~T}_{1}=-16^{\circ} \mathrm{C}=257 \mathrm{~K} \\
& \mathrm{P}_{2}=760 \mathrm{~mm} \mathrm{Hg}, \mathrm{~V}_{2}=?, \mathrm{~T}_{2}=0^{\circ} \mathrm{C}=273 \mathrm{~K}
\end{aligned}
$$

$$
\underline{\mathrm{P}}_{1} \underline{V}_{1}=\underline{\mathrm{P}}_{2} \underline{V}_{2}
$$

\[

\]

4. (a) This is first an application of the ideal gas equation
```
\(\underline{\mathrm{P}}_{1} \underline{\mathrm{~V}}_{1}=\underline{\mathrm{P}}_{2} \underline{\mathrm{~V}}_{2}\)
    \(V_{2}=\underline{V}_{1} \times \mathrm{P}_{1} \times \mathrm{T}_{2}\)
            \(\mathrm{P}_{2} \times \mathrm{T}_{1}\)
        \(=\underline{672 \mathrm{~cm}^{3} \times 760 \mathrm{~mm} \mathrm{Hg} \times 273 \mathrm{~K}}\)
                \(760 \mathrm{mmHg} \times 819 \mathrm{~K}\)
            \(=\underline{224 \mathrm{~cm}^{3}}\)
```

 \(P_{1}=760 \mathrm{mmHg}, \mathrm{P}_{2}=760 \mathrm{~mm} \mathrm{Hg}\)
 \(\mathrm{V}_{1}=672 \mathrm{~cm}^{3}\)
 \(\mathrm{T}_{1}=273+540=819 \mathrm{~K}\)
 \(\mathrm{T}_{2}=273 \mathrm{~K}\)
 (b) The mass of $224 \mathrm{~cm}^{3}$ of sulphur $=2.56 \mathrm{~g}$

The mass of $1 \mathrm{~cm}^{3}$ of sulphur $=\underline{2.56 g}$ $224 \mathrm{~cm}^{3}$
\therefore The mass of 22.4×10^{3} of sulphur $=\frac{2.56 \mathrm{~g} \times 22.4 \times 103 \mathrm{~cm}^{3}}{224 \mathrm{~cm}^{3}}$

$$
=\underline{256} \mathrm{~g}
$$

(c) The relative formula mass of sulphur $=256$
(d) Molar mass of Sulphur $=256 \mathrm{~g}$

Atoms of sulphur molecule $=\underline{256 g}$
32 g

$$
=8
$$

\therefore The formula of a sulphur molecule is:

$$
=\mathrm{S}_{8}
$$

5. This problem is solved by using the equation of state.
$\mathrm{PV}=\mathrm{nRT}$
$\mathrm{P}=1 \mathrm{~atm}, \mathrm{~V}=? \mathrm{R}=8.21 \times 10^{-2} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \mathrm{~T}=\mathrm{O}^{\circ} \mathrm{C}$
$\mathrm{KClO}_{3}=39+35.5+48$

$$
=122.5 \mathrm{~g} \mathrm{~mol}^{-1}
$$

Moles of $\mathrm{KClO}_{3}=12.25 \mathrm{~g}$
$122.5 \mathrm{~g} \mathrm{~mol}^{-1}$
$=0.1 \mathrm{~mol}$
$\therefore \mathrm{n}=0.1 \mathrm{~mol}$.

From the equation: i.e.
$2 \mathrm{KClO}_{3}(\mathrm{~s}) \longrightarrow \quad 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$ gives 3 moles of $\mathrm{O}_{2}(\mathrm{~g})$
It follows that:
2 moles of KClO_{3} give 3 moles of O_{2}
Chemistry Formulas Book

1 mole of KClO_{3} gives $3 \underline{\text { moles of } \mathrm{O}_{2}}$
2 moles of KClO_{3}
$\therefore 0.1$ mole of KClO_{3} will give 3 moles of $\mathrm{O}_{2} \times 0.1$ mole of KClO_{3}
2 moles of KClO_{3}
$=\underline{0.15}$ mole of O_{2}
\therefore Using the equation of state and substitute appropriately i.e.

$$
\begin{aligned}
\mathrm{PV} & =\mathrm{RT} \\
\mathrm{~V} & =\frac{\mathrm{nRT}}{\mathrm{P}} \\
& =\underline{0.15 \mathrm{~mol} \times 8.21 \times 10^{-2} \mathrm{~atm} \cdot \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 273 \mathrm{~K}} \\
& \approx \quad \underline{\mathrm{3tm}}
\end{aligned}
$$

6. This problem is solved by applying Graham's Law of diffusion.

$$
\begin{aligned}
& \text { Rate } \propto \underset{\sqrt{ }{ }^{\frac{1}{d}}}{ } \\
& \text { Note: Rate = Volume } \\
& \text { Time } \\
& \therefore \begin{array}{lll}
\therefore \frac{\text { Volume }}{\text { Time }} & \underline{1} \\
& \\
& \text { Hence: } \underline{\mathrm{R}_{1}} & =\underset{\sqrt{\mathrm{d}} \underline{\mathrm{~d}_{2}}}{\mathrm{R}_{2}} \\
& \sqrt{\mathrm{~d}_{1}}
\end{array}
\end{aligned}
$$

Rate of diffusion of oxygen $=\underline{60} \mathrm{~cm}^{3}=6 \mathrm{~cm}^{3} / \mathrm{s}$ 10s
Rate of diffusion of Chlorine $=\underline{100} \mathrm{~cm}^{3}=4 \mathrm{~cm}^{3} / \mathrm{s}$
Chemistry Formulas Book

It therefore follows that:

7. (a) This part involves the ideal gas equation

$$
\begin{aligned}
\frac{\mathrm{P}_{1} \underline{V}_{1}}{\mathrm{~T}_{1}} & =\frac{\mathrm{P}_{2} \underline{\mathrm{~V}}_{2}}{\mathrm{~T}_{2}} \\
& \\
\mathrm{~V}_{1} & =306 \mathrm{~cm}^{3} \\
\mathrm{~V}_{2} & =? \\
& \mathrm{~T}_{1}=293 \mathrm{~K} \mathrm{P}_{1}=730 \mathrm{~mm} \mathrm{Hg} \\
\mathrm{~V}_{2} & =\underline{\mathrm{V}}_{1} \times \mathrm{P}_{1} \frac{\times \mathrm{T}_{2}}{\mathrm{P}_{2} \times \mathrm{T}_{1}} \\
& \\
& =\underline{306 \mathrm{~cm}^{3} \times 273 \mathrm{~K} \times 730 \mathrm{~mm} \mathrm{Hg}}
\end{aligned}
$$

```
            293 x 760 mm Hg
\approx274 cm}\mp@subsup{}{}{3
```

(b.)

Using the ideal gas equation i.e.

$$
\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}
$$

If among other factors the temperature is $0^{\circ} \mathrm{C}$ for either T_{1} or T_{2} is zero the substitution would then be either:

$$
\frac{\mathrm{P}_{1} \mathrm{~V}_{2}}{0}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{T_{2}} \text { or } \frac{\mathrm{P}_{1} V_{1}}{T_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{0}
$$

The above equations would be undefined and thus the importance of the conversion from ${ }^{\circ} \mathrm{C}$ to K .
(c) Mass $=$ Volume x density or $\mathrm{m}=\mathrm{vxd}$.
(d) Mass of hydrogen $=273 \mathrm{~cm}^{3} \times 9.0^{-5} \mathrm{gcm}^{-3}$

$$
=\underline{0.02457 \mathrm{~g}}
$$

(d) $0.02457 \mathrm{~g} \mathrm{H}_{2}(\mathrm{~g})$ displace 0.2 g metal $1 \mathrm{~g} \mathrm{H}_{2}(\mathrm{~g})$ displaces $\quad 0.2 \mathrm{~g}$
0.02457 g

$$
=8.1
$$

Therefore equivalent of metal is 8.1
(e) Atomic mass = Valency x equivalent

$$
\begin{array}{r}
=8.1 \times 3 \\
=\underline{24.3}
\end{array}
$$

8. The formula that can be applied for both (a) and (b) is

$$
\mathrm{K}(\text { Kelvin })={ }^{\circ} \mathrm{C} \text { (degree Celsius) }+273
$$

$$
\mathrm{K}={ }^{\circ} \mathrm{C}+273
$$

```
(a) (i) - 130}\textrm{C}\mathrm{ to K
        K= }\mp@subsup{}{}{\circ}\textrm{C}+27
            = -130}\textrm{C}+27
            = 260K
        ii) }37\mp@subsup{}{}{\circ}\textrm{c}\mathrm{ to K
        K= 0}\textrm{C}+27
        = 37+273
        = 310K
```

 (iii) \(223^{\circ} \mathrm{C}\) to K
 \(\mathrm{K}={ }^{\circ} \mathrm{C}+273\)
 \(=223+273\)
 \(=\underline{496 \mathrm{~K}}\)
 (b) (i) 378 K to ${ }^{\circ} \mathrm{C}$
$\mathrm{K}={ }^{\circ} \mathrm{C}+273$
${ }^{0} \mathrm{C}=\mathrm{K}-273$
$=378-273$
$=\underline{105^{\circ} \mathrm{C}}$
(ii). 40 K to ${ }^{\circ} \mathrm{C}$
$\mathrm{K}={ }^{\circ} \mathrm{C}+273$
$={ }^{\circ} \mathrm{C}=\mathrm{K}-273$
= 40-273
$=-233^{\circ} \mathrm{C}$
(iii) 878 K to ${ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{K}={ }^{\circ} \mathrm{C}+273 \\
&{ }^{\circ} \mathrm{C}=\mathrm{K}-273 \\
&=878-273 \\
&= \\
&=605^{\circ} \mathrm{C} \\
& \mathrm{MC} \Delta \mathrm{~T} \quad \mathrm{M}=50 \mathrm{~g} \\
& \mathrm{C}=4.2 \mathrm{Jg}-{ }^{\circ} \mathrm{C}-1 \\
& \mathrm{~T}=50^{-1}
\end{aligned}
$$

$$
\Delta \mathrm{H}=50 \mathrm{~g} \times 4.2 \mathrm{Jg}^{-1}{ }^{0} \mathrm{C}^{-1} \times 50^{\circ} \mathrm{C}
$$

$$
=10500 \mathrm{I}
$$

10.

$$
\text { Total volume }=(500+500) \mathrm{cm}^{3}=1000 \mathrm{~cm}^{3}
$$

\therefore Mass of solution $=1000 \mathrm{~cm}^{3} \times 1 \mathrm{~g} \mathrm{~cm}^{-3}$

$$
=1000 \mathrm{~g}
$$

Rise in temperature $(\Delta \mathrm{T})=13.7^{\circ} \mathrm{C}$

$$
\begin{aligned}
\Delta \mathrm{H} & =\mathrm{MC} \Delta \mathrm{~T} \\
& =1000 \mathrm{~g} 4.2 \mathrm{Jg}^{-1} \mathrm{O}^{-1} \times 13.7^{\circ} \mathrm{C} \\
& =57540 \mathrm{~J} \\
& =57.54 \mathrm{KJ}
\end{aligned}
$$

Considering either NaOH or HCl and given that concentration is 2 M of each.

Moles that reacted

$1 \mathrm{~cm}^{3}$ contains $=\underline{2 \text { moles }}$
$1000 \mathrm{~cm}^{3}$
$=0.002$ moles
$\therefore 500 \mathrm{~cm}^{3}$ contain $=0.002 \mathrm{~mol} \mathrm{x} 500 \mathrm{~cm}^{3}$
Chemistry Formulas Book
$1000 \mathrm{~cm}^{3}$
$=0.001 \mathrm{moles}$
\therefore Heat liberated per mole either of HCl or NaOH is 57.54 KJ Heat $\Delta \mathrm{H}$ (neutralization) $=\underline{-57.54 \mathrm{KI} \mathrm{mol}^{-1}}$
11. $\mathrm{C}=1 \mathrm{t}$

Where C = coulombs (quantity in amperes)
$\mathrm{t}=$ time in seconds
$\therefore \mathrm{C}=0.2 \mathrm{Ax} 482 \mathrm{~s}$
$=965 \mathrm{As}$
i.e. 965 coulombs
12.
electrolysis.
$\mathrm{M} \propto \mathrm{It}$
$\mathrm{M}=\mathrm{KIt} \quad \mathrm{K}=\mathrm{E}$ (electrochemical equivalent)
$\mathrm{M}=\mathrm{KIt}$
M = EIt
N.B. It = C i.e. coulombs or quantity of electricity.
$\mathrm{M}=\mathrm{EC}$
$C=\underline{E}$

$$
\begin{aligned}
& =\frac{108 \mathrm{~g} \mathrm{~mol}^{-1}}{1.118 \times 10^{-3} \mathrm{gC}^{-1}} \\
& \approx \underline{96600 \mathrm{C}}
\end{aligned}
$$

13 (a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
Chemistry Formulas Book
(b) (i) $\underline{Q} \xrightarrow{\mathrm{H}_{2} / \mathrm{Ni}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$

Then Q must be $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$
.(ii) $\mathrm{C}_{3} \mathrm{H}_{6}$
(c)
$\xrightarrow[\text { Hot }]{\text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4}} \quad \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$

Then P must be an alcohol $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
Dehydration - Removal of hydrogen and oxygen from a compound and when the two recombine water is formed.
(d). (i) P , molecular formula $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$ then general formula is:

$$
\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2} \mathrm{O} \text { or } \mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+1} \mathrm{OH}
$$

(ii) Q , molecular formula is: $\mathrm{C}_{3} \mathrm{H}_{6}$ Then general formula is: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n}$
(iii) R , molecular formula is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$

Then general formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$
14. R.F.M. of $\mathrm{Na}_{2} \mathrm{CO}_{3}=(2 \times 23)+12+(3 \times 16)$

$$
=106
$$

\therefore Molar mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=106 \mathrm{~g} \mathrm{~mol}^{-1}$
Moles of $\mathrm{Na}_{2} \mathrm{CO}_{3} \quad=\underline{10.6 \mathrm{~g}}$ $=106 \mathrm{~g} \mathrm{~mol}^{-1}$

```
                        \(=\underline{0.1 \mathrm{~mol}}\)
\(\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \quad 2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})\)
```

From the equation:
\therefore Molarity $=\underline{\ell}$

Moles of $\mathrm{Na}^{+}(\mathrm{aq})=2 \times 0.1 \mathrm{~mol}$

$$
=0.2 \mathrm{~mol}
$$

$$
=0.2 \mathrm{~m}
$$

\therefore molarity $=\underline{0.2 \mathrm{~mol}}$
1ℓ

$$
=0.2 \mathrm{M}
$$

15. The formula that can be applied is:-

$$
\mathrm{M}_{\mathrm{a}} \mathrm{~V}_{\mathrm{a}}=\mathrm{M}_{\mathrm{b}} \mathrm{~V}_{\mathrm{b}}
$$

(i) $\quad \mathrm{M}_{\mathrm{a}}=$ molarity of $\mathrm{HCl}=0.1 \mathrm{M}$
$\mathrm{V}_{\mathrm{a}}=$ volume of $\mathrm{HCl}=$?
$\mathrm{M}_{\mathrm{b}}=$ molarity of $\mathrm{NaOH}=0.05 \mathrm{M} \mathrm{cm}^{3}$
$\underline{\mathrm{V}_{\underline{b}}}=$ Volume of $\mathrm{NaOH}=25 \mathrm{~cm}^{3}$
$\mathrm{M}_{\mathrm{a}} \mathrm{V}_{\mathrm{a}}=\mathrm{M}_{\mathrm{b}} \mathrm{V}_{\mathrm{b}}$
$\mathrm{V}_{\mathrm{a}}=\frac{\mathrm{M}_{\mathrm{b}} \underline{\mathrm{V}}_{\mathrm{b}}}{\mathrm{M}_{\mathrm{a}}}$
$=0.05 \mathrm{M} \mathrm{x}^{25 \mathrm{~cm}^{3}}$ 0.1
$12.5 \mathrm{~cm}^{3}$
(ii) $\quad \mathrm{M}_{\mathrm{a}}=$ molarity of $\mathrm{HCl}=$?

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{a}}=\text { volume of } \mathrm{HCl}=25 \mathrm{~cm}^{3} \\
& \mathrm{M}_{\mathrm{b}}=\text { molarity of } \mathrm{NaOH}=0.05 \mathrm{M} \\
& \mathrm{M}_{\mathrm{b}}=\text { Volume of } \mathrm{NaOH}=100 \mathrm{~cm}^{3} \\
& \mathrm{M}_{\mathrm{a}} \mathrm{~V}_{\mathrm{a}}=\mathrm{M}_{\mathrm{b}} \mathrm{~V}_{\mathrm{b}} \\
& M_{a}=\frac{M_{b} V_{b}}{V_{a}} \\
& =\underline{0.05 \mathrm{M} \mathrm{x}^{100} \mathrm{~cm}^{3}} \\
& 25 \mathrm{~cm}^{3} \\
& =\underline{0.2 \mathrm{M}}
\end{aligned}
$$

16. The formula that can be used is:

Molarity x Volume $=$ molarity x volume

```
(original)
(diluted)
```

M_{1} Original molarity $=2 \mathrm{M}$
M_{2} diluted molarity $=$?
V_{1} original volume $=25 \mathrm{~cm}^{3}$
V_{2} diluted volume $=500 \mathrm{~cm}^{3}$
$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$
$M_{2}=\underline{M}_{1} \underline{V}_{1}$
$=\underline{2 M \times 25 \mathrm{~cm}^{3}}$

```
500 cm}\mp@subsup{}{}{3
= 0.1 M
```

17. The formula used is:

$$
\begin{aligned}
& \mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{1} \mathrm{~V}_{2} \\
& \mathrm{M}_{1}=6 \mathrm{M} \\
& \mathrm{~V}_{1}=? \\
& \mathrm{M}_{2}=0.5 \mathrm{M} \\
& \mathrm{~V}_{2}=30 \mathrm{~cm}^{3} \\
& \mathrm{~V}_{1}=\frac{\mathrm{M}_{2} \underline{V_{2}}}{\mathrm{M}_{1}} \\
& =\underline{0.5 \mathrm{M} \times 30 \mathrm{~cm}^{3}} \\
& 6 \mathrm{M} \\
& =\underline{2.5 \mathrm{~cm}^{3}}
\end{aligned}
$$

\therefore This is done by diluting $2.5 \mathrm{~cm}^{3}$ of 6 M HCl to final volume of $30 \mathrm{~cm}^{3}$ and required molarity of 0.5 M is obtained.
18. The equation for the reaction is :-
$3 \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{H}_{3} \mathrm{PO} \overrightarrow{4}_{4}(\mathrm{aq}) \quad 2 \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
The formula $\underline{M}_{a} \underline{V}_{a}=\underline{2}$ will be applicable
$\mathrm{M}_{\mathrm{b}} \mathrm{V}_{\mathrm{b}} 3$
$\mathrm{M}_{\mathrm{a}}=0.3 \mathrm{M}=$ molarity of $\mathrm{H}_{3} \mathrm{PO}_{4}$
$\mathrm{V}_{\mathrm{a}}=40 \mathrm{~cm}^{3}=$ Volume of $\mathrm{H}_{3} \mathrm{PO}_{4}$
$\mathrm{M}_{\mathrm{b}}=0.2 \mathrm{M}=$ molarity of $\mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
\text { i.e. Volume of } 0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3} \text { required is } 90 \mathrm{~cm}^{3}
$$

19. (a) The decrease is due to removal of water of crystallization.
(b) $\mathrm{MgSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$ (s) $\quad \mathrm{MgSO}_{4}(\mathrm{~s})+\mathrm{xH}_{2} \mathrm{O}(\ell)$

The formula that can be applied for finding the value of x is:
$\frac{\text { Mass of water of crystallization }}{\text { Mass of anhydrous } \mathrm{MgSO}_{4}}=\quad$ R.F.M. of $\underline{\mathrm{xH}_{2}} \underline{\mathrm{O}} \mathrm{MgSO}_{4}$
$(\mathrm{Mg}=24, \mathrm{~S}=32, \mathrm{O}=16, \mathrm{H}=1)$
Mass of hydrated salt 5.85 g
Mass of anhydrous salt $=2.86 \mathrm{~g}$
\therefore Mass of water of crystallization $=5.85-2.86$

$$
=2.99 \mathrm{~g}
$$

R.F.M. of $\mathrm{MgSO}_{4}=24+32+64$

$$
=\underline{120}
$$

$$
\mathrm{x}
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{b}}=? \quad=\text { Volume of } \mathrm{Na}_{2} \mathrm{CO}_{3} \\
& 3 \mathrm{M}_{\mathrm{a}} \mathrm{~V}_{\mathrm{a}}=\underline{2 \mathrm{M}_{\underline{\mathrm{b}}} \underline{\mathrm{~V}_{\underline{b}}}, ~} \\
& \begin{aligned}
V_{b} & =\frac{3 M_{a} V_{a}}{2 M_{b}} \\
& =\frac{3 \times 0.3 \mathrm{M} \times 40 \mathrm{~cm}^{3}}{2 \times 0.2 \mathrm{M}} \\
& =90 \mathrm{~cm}^{3}
\end{aligned}
\end{aligned}
$$

```
\(x\) (R.F.M. of \(\left.\mathrm{H}_{2} \mathrm{O}\right)=[(2 \times 1)+16]\)
    \(=x(18)\)
    \(=18 \mathrm{x}\)
\(\therefore \underline{2.99}=\underline{18 x}\)
\(2.86 \quad 120\)
\(2.99 \times 120=18 \times \times 2.86\)
\[
\begin{aligned}
18 \mathrm{x} & =\frac{2.99 \times 120}{2.86} \\
\mathrm{x} & =\frac{2.99 \times 120}{2.86 \times 18} \\
& =6.96 \\
& =7
\end{aligned}
\]
```

Thus $\mathrm{MgSO}_{4.7} 7 \mathrm{H}_{2} \underline{\mathrm{O}}$

