K.C.S.E 1995 PAPER 1 MARKING SCHEME

1. Micrometer screw gauge
2.

$F_{1 y}$
3. Effort would reduce
4. Flow from a to B
5. Pressure difference between liquids in A and B is $\mathrm{P}=$ egh where e is liquid, $\mathrm{g}=$ acceleration due to gravity and h is height
But force $=P x$ cross section area of siphon, $P=F / A$
Thus F = egh A Since e.g. A are constants F α h
6. No change in flow OR the flow will still continue
7. Oil spread until it is one molecule thick or film taken as a perfect circle or oil drop has been taken as perfect sphere/ cylinder/ uniform thickness
8. The liquid expand uniformly, expansion is measurable (large enough), thermal conductivity
9. Rectilinear propagation/ light travels in a straight line
10. Water/ or glass are poor conductor of heat
11. Each material is brought in turn to touch the cap. The conductor will discharge the electroscope while the insulator will not (accept bring near conductor gauge)
12. Can be short - circuited without being destroyed
$>$ Longer life/ electrolyte never need attention
$>$ Can stay discharged without being destroyed
$>$ Can be charged with large currents faster charging
$>$ More rugged/ not damaged by rough condition of use/ robus
> Delivers large current, light
13. Surface tension / adhesive forces supports water column or more capillarity in tube 2 than tube 1
$>$ Surface tension is the same in both tubes and equal to the weight of water column supported

- Narrow tube has longer column to equate weight to wider tube
\rightarrow Volume of water in the tubes is same hence narrower tube higher column

14. - Length of conductor in the field

- Angle between conductor and fields

15. All ferromagnetic materials are attracted by magnets or any magnetic materials is attracted
16. - increasing the tension

- Reducing the length

17. At equilibrium sum of clockwise moment $=$ sum of anti - clockwise moments Clockwise moments $=\mathrm{P} \times \quad \mathrm{X}=\mathrm{QY}$ $P x=Q y$
18. h glass $=\mathrm{V}$ air $/ \mathrm{V}$ glass $\quad 1.5=3 \times 10^{8} \sqrt{ } \mathrm{~g}$
$\mathrm{Vg}=3 \times 10^{8} / 1.5 \quad=2 \times 10^{8} \mathrm{~ms}^{-1}$
19. $\mathrm{V}=\mathrm{f} \lambda$ sine V is constant reducing f to $1 / 3 \Rightarrow \quad \lambda$ increases 3 fold
20. While light is composed of seven colour different/ many colour. For each colour glass had different value of refractive index/ different velocities of different λ. So each colour is deviated differently causing dispersion
21. A body at rest or in state of uniform motion tends to stay in that state unless an unbalanced force acts on it.
22. Heat capacity is quantity of heat required to raise the temperature of the body by 1 k or $1^{0} \mathrm{C}$ while, specific heat capacity is quantity of heat required to raise temperature of unit mass of body by $1 \mathrm{k} / 1^{0} \mathrm{C}$.
23. (If $\mathrm{x} \neq \mathrm{z}$ but both above y give 1 mk . Accept difference of 1.0 mark)

$h X=h Z>h Y$
24. - Reducing

- Increasing

25. Polarization
26.

Type of radiation	Detector	Uses
Ultra violet	Photographic paper fluorescence material	Cause ionization kills bacteria OR operating photosular cells photography
Infrared	Phototransistor blackened thermometer	Warmth sensation
Radio waves	Radio receiver or TV receiver	Communication

27. $\mathrm{E}_{2}=\mathrm{E}_{1}+\mathrm{hfi} \quad$ or $\mathrm{E}_{2}-\mathrm{E}_{1}=\mathrm{h}=\mathrm{c} / \lambda$
$\mathrm{h}=$ plank constant
c- Velocity of light
λ - Wave length of light
28. - Lead

- Very dense/ has high atomatic mass

29. Extrapolation on graph (line to touch frequency)

Reading on graph to $(4.0+-0.2) \times 10^{14} \mathrm{~Hz}$
30. Lines parallel to the one shown but cutting of axis further in
31. Quality / Timbre
32. $\mathrm{X}=14$
33. The point where the weight of the body acts
34. Temperature of source be the same

- Length of rods be the same / wax
- Amount of wax (detector) be the same

35.

36.

Diagram Sieving Convergent races falling on the minor Convergent rays brought os
focus at the eye four at the eye
De
Raver sean wide feed of view

K.C.S.E 1995 PHYSICS PAPER 232/2 MARKING SCHEMES

1. (a)

(b) Constant Vel^{0}

Uniform vet

- zero accl ${ }^{\text {n }}$
(c) $\quad \sqrt{ } 4.5=\frac{118-50}{6.5-2}=15 \mathrm{~m} / \mathrm{s} \quad 15.5+-1.5(14-17)$

$$
\begin{aligned}
& \sqrt{ } 6.5=\frac{112-70}{7}=6 \mathrm{~m} / \mathrm{s} \\
& \text { Average } \operatorname{accln}=\frac{\Delta v}{\mathrm{t}}=\frac{\mathrm{v}-11}{\mathrm{t}}=\frac{(6-15)}{2}
\end{aligned}
$$

$$
=-4.5 \mathrm{~m} / \mathrm{s}^{2}
$$

2. $\underline{1}=\underline{7}+\underline{1}+\underline{1}$

$$
\begin{array}{llll}
\mathrm{R}_{\mathrm{C}} & \mathrm{R}_{1} & \mathrm{R}_{2} & \mathrm{R}_{3}
\end{array}
$$

$$
=\frac{1}{6}+\frac{1}{3}+\frac{1}{6}
$$

$$
=\frac{1}{6}
$$

$$
\mathrm{R}_{\mathrm{C}}=\underline{6}=1.5 \Omega
$$

$$
5
$$

(b) Total resistance $=1.5+2.5=4 \Omega$

$$
\mathrm{E}=1(\mathrm{YFR}) \text { Or } \mathrm{l}=\frac{\mathrm{V}}{\mathrm{R}}
$$

$$
\begin{aligned}
& 2=\mathrm{Ll} \\
& \text { Current through xy } \mathrm{l}=0.5 \mathrm{~A} \\
& \text { P.d across } \mathrm{yz} \quad=0.5 \times 1.5 \mathrm{~V} \\
& \mathrm{~s}=\text { current through } 3 \Omega=\frac{0.5 \times 1.5}{3}=0.25 \mathrm{~A}
\end{aligned}
$$

(c) $\mathrm{R}=/ \mathrm{L} \quad \mathrm{A}$

$$
\mathrm{I}=\underset{\mathrm{L}}{=\mathrm{RA}} \quad=\frac{6 \times 5.0 \times 10^{-6}}{1.0} \frac{\mathrm{Rm}^{2}}{\mathrm{~m}}
$$

$$
=3.0 \times 10^{-5} \Omega \mathrm{~m}
$$

3.

(ii) Magnification $=\underset{\mathrm{V}}{\underline{\mathrm{V}}} \underline{\mathrm{Isign}}=\frac{1.1}{1.6}$ OR $\frac{1.75}{2.5} \quad=0.7 \pm 0.05$
(b) $\quad \underline{1}=1+\frac{1}{1}$
$1=10$
f u v
u 60
$\frac{1}{10}=\underline{1}+\underline{1}$
$\underline{1}=\underline{1}+\underline{1}$
Objects is 6 cm from the lens
U $10 \quad 15$

4 (a) Lens symbol object between f \& F 2 appropriate rays position of image

Image correctly drawn

The diagram in figure 3 shows a certain eye defect

(b) (i) Name of defect is long sightedness
(Refer to the diagram in the figure 3 above)
(c) (i) For water not to pour weight of the water must be less centrifugal force OR for water to pour out $\underline{M V}^{2}>m g$
r
(ii) Frictional force $\mathrm{F}=$ Centripetal force

$$
\begin{aligned}
& \frac{\mathrm{MV}^{2}}{\mathrm{R}}=\frac{1200 \times(25)^{2}}{150} \\
&=5.0 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

5. (a) (i) The magnitude of the induced e.m.f is directly proportional to the rate at which the conductor cuts the magnetic field lines
The induced current flows in such a direction as to oppose the changes producing it.
(ii) Plugging a magnetic into a coil
$>$ in speed its g twins as straight of magnetic field
$>$ Results in an increased in the induced e.m.f
(b) (i) Energy is neither created nor destroyed

Make power constant
$\mathrm{VU}=\underset{\operatorname{Joules}(1 / 2)}{\text { Count }}$
$\mathrm{P}=\mathrm{IV}$
For large V, 1 must lower for power input to be equal to power output
(ii)

$$
\begin{aligned}
& \frac{\mathrm{Vs}}{\mathrm{Ns}}-\frac{\mathrm{Vp}}{\mathrm{Vp}} \\
& \mathrm{Ns}=\frac{\mathrm{OR} \times \mathrm{Vs}}{\mathrm{Vp}}- \\
& \frac{\mathrm{Vp}}{240}
\end{aligned}
$$

SECTION II

6. (a) Progressive wave- Wave profile moves along with the speed of the wave Stationary wave - wave profile appears static

Progressive wave - Phase of points adjacent to each other is different Stationary wave - All points between successive node vibrate in phase

Progressive wave - Energy translation in the direction of the wave travels Stationary wave- No translation of energy but energy associated in the wave
(b) (i) A glass slide ie. blackened with soot or paint lines are drawn close together using a razor blade or pin.
(ii) Path differences equals to an odd number of half wavelengths or completely out of phase (180°)

(iii) Photometer / photocell or thermometer with a bulb
7. (a) Common or sillen (semiconductor) is doped with impurity atoms which trivalent (e.g boron or indium) intensity in currency on pole group 4 doped with trivalent
(b) p-n-p emitter and carries made of p type material are of n - type material for charge carries holes
$>\mathrm{n}-\mathrm{p}-\mathrm{n}-$ emitter and collector made of n - type material are made of p type (or charge carries electrons)
(c) At the middle of the reaction of a curve a tangent is drawn change on output $\left(\Delta \mathrm{V}_{0}\right)$ is determined and a corresponding change input ($\Delta \mathrm{V}_{1}$) also attained change amplification.
(d) (i)

(ii) $\mathrm{i}_{2}=\mathrm{l}_{\mathrm{C}} \mathrm{r} \mathrm{l}_{\mathrm{B}}$
(e) Base - emitter - forward biased

Base collector - reversed biased

