KCSE 1997 PHYSICS PAPER 232/1 MARKING SCHEME

1. Volume $=7.4-4.6 \mathrm{~cm}$

$$
\begin{aligned}
& 2.8 \mathrm{~cm} \\
& \text { Density }=\underline{\text { Mass }} \\
& =\underline{11 \mathrm{~g}} \\
& =3.8 \mathrm{~cm}^{3} \\
& =3.9 \mathrm{gcm}^{-3}
\end{aligned}
$$

2. F_{1} and F_{6}
3. Either altitude or latitude/ radius of earth changes/ acceleration due to gravity from place to place away from the earth
4. Balance: meat +0.5 kg on one side and 2 kg on the other:
5. $\mathrm{H}_{1} \mathrm{P}_{1} \mathrm{~g}=\mathrm{h}_{2} \mathrm{p}_{2} \mathrm{~g}$
$\mathrm{H}_{2}=\frac{1.36 \times 10^{4} \times-64}{8 \times 10^{2}}$
$=1088 \mathrm{~cm} ; / 10.88 \mathrm{~m}$.
6. Volume of 1 molecule $=\frac{18 \mathrm{~cm}^{3}}{6 \times 10^{23}}$

Diameter of the molecule $=18 \mathrm{~cm}^{3}$
6×10^{23}

7. Glass is a bad conductor of heart, the difference in temperature between the inside and the outside cause unequal expansion
8. Adhesion of water to glass is greater than cohesion
9. The rate of cooling depends on the rate of evaporation

Rate of evaporation depends on the surface area
Surface area A, < surface area B for evaporation
10. A ray from A A ray from B

Relative positions of A and B correctly drawn
11. Solar cell (photovoltaic) photocell/ photo electric cell
12.

13. Soft magnetic materials loose their magnetism easily while hard magnetic materials retain magnetism longer
14. $\mathrm{Q}=\mathrm{It} \quad \mathrm{Q}=0.5 \times 4 \times \times 60 ; \quad=120 \mathrm{C}$
15.

16. $\mathrm{d}=$ speed xt ; $\quad 340 \times 2$; 680 m
17. At low speeds the speed is streamline At high speed the flow is turbulent
18. $\quad \frac{\mathrm{V}_{\mathrm{r}}}{\mathrm{V}}=\underline{1} \mathrm{l}_{\mathrm{r}}$

$$
\begin{array}{ccc}
240 \\
6 & =30 & 1_{\mathrm{r}}
\end{array} \quad 1_{\mathrm{r}}=0.75 \mathrm{~A} ;
$$

19. $\quad \mathrm{mgh}=1 / 2 \mathrm{mv}^{2}$ OR $\quad \mathrm{V}^{2}=\mathrm{U}^{2}+2$ as;
$\mathrm{h}=1 / 2 \quad \mathrm{~S}=\mathrm{V}^{2}=36$
$=18 \mathrm{~m}$;
2as 2(10)
$\mathrm{S}=\mathrm{ut}+1 / 2 \mathrm{at}^{2} \quad=1.8 \mathrm{~m} ;$
20. $\quad V=f ;$
$\mathrm{V}=\frac{3.0 \times 10^{8} \mathrm{~ms}^{-1}}{95.6 \times 10^{6} \mathrm{~S}^{-1}}=3.14 \mathrm{~m}$;
F $\quad 95.6 \times 10^{6} \mathrm{~S}^{-1}$
21. 6 V
22. parallel $\frac{1}{\mathrm{R}_{\mathrm{P}}}=\frac{1}{400}+\underline{1}+\underset{400}{2}$ 400

$$
\begin{gathered}
\mathrm{YZI}=\mathrm{V}=12=0.02 \mathrm{~A} \\
\mathrm{R} \quad 60
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{I} \\
\mathrm{R}=12=0.02 \mathrm{~A} \\
\\
\frac{400}{600} \times 12=80
\end{gathered}
$$

23. $\quad($ No of irons) $\times 1000)=$ IV

$$
\text { Number }=\frac{13 \times 240}{1000}=3.12 ;
$$

24. Extra heat is required to change ice to water / latent heat of fusion
25.

26.

27. A trolley slows down/ motion decreases since mass increases and the momentum is conserved, the velocity goes down
28. $\mathrm{C}_{\mathrm{T}}=\mathrm{C}_{1}-\mathrm{C}_{2}=1=1+1$

$$
\begin{gathered}
\mathrm{C}_{T} \quad \mathrm{C}_{\mathrm{P}} \quad \mathrm{C}_{3} \\
=\mathrm{C}_{\mathrm{T}}=\frac{\mathrm{C}_{P} \underline{C}_{3}}{\mathrm{C}_{P}+\mathrm{C}_{3}}
\end{gathered}
$$

29. ${ }^{0} \mathrm{C}+273=-20+273=252 \mathrm{~K}$
30. (a) Dark and bright fringes
(b) Coloured fringes
31. Small differences in frequencies
32.

33. By using laminated core
34.

35. After 3 secs number decayed $=1 / 2 \times 5.12 \times 10^{20}=2.56 \times 10^{20}$

Next 3 secs. Number decayed $=1 / 2 \times 2.56 \times 10^{20}=1.28 \times 10^{20}$
Total number decayed

$$
\begin{aligned}
& =(1.28+2.56) \times 10^{20} \\
& =3.84 \times 20^{20}
\end{aligned}
$$

PHYSICS PAPER 232/2 K.C.S.E 1997 MARKING SCHEME.

1. i) -To make and beak contact / circuit

- It bends and straightens or the metals expand differently.
ii) Current flows, heating takes place, temperature rises, strip is heated and bends way from contact ; disconnects heater; temperature; drops reconnected heater or completes circuit.
b) Let final temperature be θ_{2}

Heat lost by water $=4200 \times 0.2\left(20-\theta_{2}\right)$
Heat lost by glass $=0.2 \times 670 \times\left(20-\theta_{2}\right)$
Heat gained by ice $=0.04 \times 334 \times 10^{3}$
Heat gained water $=0.04 \times 4200\left(\theta_{2}-0\right)$
Heat lost $=$ Heat gained.
$4200 \times 0.2\left(20-\theta_{2}\right)+0.2 \times 670 \times\left(20-\theta_{2}\right)=0.04 \times 334 \times 103+0.04$
X $4200\left(\theta_{2}-0\right)$
$\theta_{2}=5.36^{\circ} \mathrm{C}$
2(a)

ii) Extrapolation $\mathrm{F} 4-0$
10.6 m force is zero

Leading x axis $=10.6+0.2$
Intercept 10.6
$10.6-8=2.6$
10.6-8
$=2.6 \mathrm{~m}$ away from B
b) $10 \mathrm{w}+(10 \mathrm{x} 60)=2.0 \mathrm{x} 40 \Rightarrow 10 \mathrm{w}+6 \mathrm{x}=80 \mathrm{w}=\mathrm{x} / 10=2 \mathrm{~N}$

3a)

b) i) $\begin{aligned} \mathrm{V} & =\mathrm{u}+\mathrm{at} \\ 0 & =20+2 \mathrm{a} \quad \text { OR } \quad \text { Deceleration }=\frac{\mathrm{u}-\mathrm{v}}{\mathrm{t}}\end{aligned}$ $a=-10 \mathrm{~ms}^{-2} \quad \frac{=20-0}{2}$
$=10 \mathrm{~ms}^{-2}$
ii) \quad Stopping time $=2.2 \mathrm{~s}$

Total time stop $=2.2 \mathrm{sec}$
Before stopping $=0.2 \times 20=4 \mathrm{~m}$
S $=u t+1 / 2 \mathrm{at}^{2}$

$$
\underline{10-202}=\underline{400}=20
$$

$$
=(20 \times 2.2)+\frac{1}{2}+10 \times 2.2^{2}
$$

$$
\overline{2(-10)} \quad 20
$$

$$
20+4=24 \mathrm{~m} \quad=19.8 \mathrm{~m}
$$

4a) $\mathrm{AB}:(2000 \times 20)+(600 \times 200)+1 / 2 \times 10 \times 4000)+(1 / 2 \times 30 \times 4000)$

$$
40000+120000+60000
$$

Total $200000 \mathrm{~J}=200 \mathrm{KJ}$
b) $\quad 6000 \times 0.6=3600 \mathrm{w}$
c) Power Input $=\underline{3.0 \times 10^{5} \times 10 \times 360}=3.0 \times 10^{5} \mathrm{wx}$ 60×60
Total $=\left(3+2 _\times 10^{3}=5.0 \times 10^{3} \mathrm{kw}\right.$ Eff. ${ }^{3} / 5 \times 100=60$
5a) Amount of current
No of coils / shape of core / X - core
b) i) End of coil facing up becomes a south pole and the metre rule is pulled down / attraction occurs. Or Rule tips; core magnetized; top of core becomes south pole; attracts magnet.
ii) The metre rule to have appointer attached to read zero when switch S is open. Use rheostat to vary current to maximum and calibrate accordingly.
c) $\mathrm{HF}=\mathrm{hf}_{\mathrm{o}}+1 / 2 \mathrm{mv}^{2}$

$$
\begin{gathered}
=(3.2+82) \times 10^{-19}=11.2 \times 10^{-19} \mathrm{f}=\frac{11.2 \times 10-19}{6.63 \times 10^{-19}} \\
\lambda=\mathrm{c}=\frac{3.0 \times 10^{8} \times 6.63 \times 10^{-34}}{11.2 \times 10^{-9}}=1.76 \times 10 \mathrm{~m}
\end{gathered}
$$

SECTION 2

6ai) Semiconductors - conducting is by holes Conductors - conducting is by electrons
ii) Semiconductors - silicon, germanium Conductors - copper , tin iron.
b)i)

ii) $\mathrm{I}_{\mathrm{B}}=0.5 / 100 \times 2=0.01 \mathrm{~mA}$

$$
\mathrm{I}_{\mathrm{C}}=2-0.01=1 / 99 \mathrm{MA}
$$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{rs}}
$$

iii) $\quad \mathrm{I}_{\mathrm{B}}=\frac{0.5 \times 4}{100}=0.02 \mathrm{~mA}$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{c}}=3.98 \mathrm{~mA} \\
& \triangle \mathrm{I}_{\mathrm{b}}=0.02-0.01=0.01
\end{aligned}
$$

$$
\mathrm{I}_{\mathrm{C}}=4-0.02=3.98 \mathrm{~mA} \quad \triangle \mathrm{I}_{\mathrm{c}}=3.98-1.99=1.99
$$

$$
\mathrm{h}_{\mathrm{FE}}=\underline{3.98}
$$

$$
0.02=1.99
$$

$$
\triangle \mathrm{I}_{\mathrm{c}}=3.98-1.79=1.99
$$

$$
\triangle \mathrm{I}_{\mathrm{b}}=0.02-0.01=0.01
$$

$$
\mathrm{HFE}=\triangle \mathrm{Ic}=1.99=1.99
$$

$$
\begin{aligned}
& \triangle \mathrm{Ib}=0.01 \\
& \triangle \mathrm{I}_{\mathrm{c}}=\frac{1.99}{\triangle \mathrm{I}_{\mathrm{b}}}=199
\end{aligned}
$$

7a(i) Transverse - particles in the wave perpendicular to the direction of the wave.
Longitudinal - particles move in the same direction as the wave.
b)i)

ii) Velocity decreases since the frequency remains the same. No loss of energy therefore amplitude does not change.
c) a) Frequency $={ }^{30} / 60=0.5 \mathrm{~Hz}$
b) \quad Speed $={ }^{6} / 2=3 \mathrm{~m} / \mathrm{s} \quad \lambda=\mathrm{V} / \mathrm{f}^{3} / 0.5=6 \mathrm{~m}$
d) A long AA' - loud and soft sound (constant) a long OO' - loud and solid.

