PHYSICS PAPER 232/1 K.C.S.E 1999 MARKING SCHEME.

1. Reading on the vernier calipers

$$0.5 + 0.01(5)$$

$$0.5 + 0.05$$
cm = 0.0055 m/ 5.50 mm.

2. Third force F3 acting on the ruler is either upwards or downwards.

No: My must be at the centre.

3. Center of gravity rises when the body is tilted slightly and lowers when released / returns to original position.

Reason: P water is greater than paraffin = height of water required is therefore less than that of paraffin.

5. Cohesion between Hg molecules is greater than adhesion between Hg and glass molecules/cohesion force or adhesion. Force.

6. (NB: with or without labeling one mark.)

- 7. αParticles are + vely charged, if majority deflected most ⇒atom is empty.
 Deflection ⇒ existence of a +vely charged nucleus.
 Few deflected ⇒ nucleus is small/mass is concentrated at the centre
- 8. Angle of rotation of reflected ray=2(angle of rotation of mirror) = $2 \times 30 = 60^{0}$
- 9. Charge concentrate at sharp point causing heavy discharge/ionization neutralization, leaf falls off.
- 10. $V = IR \implies I = V_R \quad I = 3/! = 3A$ ${}^{1}/_{R} = 1/R1 + 1/R2 = 2/2$ ${}^{1}/_{R} = 1 = R = 1$

- 12. -Dipping a magnet into a container with iron fillings, most of them will cling at the poles ⇒
 - Use of plotting compass to trace.

13.

18.

14. Moment of couple = Force x distance between forces. = $10 \times 2 = 20 \text{NM}$.

N

- 15. F = Ma = 70 x 0.5 F = 35N35N = 20a $a = \frac{35}{20}$ = 1.75M/s²
- 16. $P = \text{force x velocity} \quad Power = Fd/t = 20 \times 10 \times 20 \text{ Mg x h/t} = 20 \times 10 \times 20 \text{ /40}$ 40 = 100i/I
- 17. $F = I/T = \frac{1}{0.5} = \frac{10}{5} = 2HZ$
 - F = No. of waves made in 1 second = 2 Hz
 OR
 - F = No of waves

Time
$$= 2/1 = 2.5 / 1.25 = 2$$
Hz

Beat frequency $f = f2 - f1$
 $= 258 - 256$
 $= 2$ Hz

F = $f2 - f1$
 $= 256 - 258$
 $= -2/2 = 2$

- 19. $P = V1 = 15000 = V \times 2$ W = QV but Q = It $e = I^2Rt$ $1500 = 2 \times 2 \times R \times 60 \times 10$ 10 x 60 =V = W 15000 $^{\mathrm{W}}/\mathrm{t} = \mathrm{VI} = \mathrm{V} = 1500$ Q 60 x 10 x 2 $60 \times 10 \times 2150 = 24R$ V = 12.5v25 = 4R10 x 60 x 2 150 $V = 25 \times 2$ 12 4 12.5V V = 12.5V
- 20. Heat lost by substance = heat gained by water

$$\begin{split} &M_s C_s \triangle \theta_1 = M_w C_w \triangle \theta 2 \\ &2 \ x \ 400 \ x \ 60 = M_w \ x \ 4200 \ x \ 1 \\ &M_w = \underbrace{2 \ x \ 400 \ x \ 60}_{4200} = \underbrace{30}_{7} = 11.4 kg \end{split}$$

21. V = I(R + r) $5 = 10 (R + 50)500 \Rightarrow R + 50 \Rightarrow R = 500 - 50 = 450\Omega$ 22. Apparent depth = 30 - 10 = 20cm real depth = 30 = 1.5

Apparent depth 20

- 23. Kinetic energy ray / heat energy.
- 24. - Horizontal acceleration is zero because g component horizontally is 0
 - -Horizontal velocity remains constant
 - Resultant horizontal force is zero

- resultant force is Zero.

 V_2 is smaller than V_1 V_1 is larger than V_2

 $P_1 = 1.03 \times 10^5$ 27. $P_2 = ?$

 $P_1V_1 = P_2V_2$

$$T1 = 20:C = 393K$$
 $V1 = 3$

$$V2 = \frac{1}{8}V \text{ or } v/8$$

$$1.03 \times 10^5 - P^2/8$$

$$= p^2 = 3.24 \times 10^5 \text{N/M}^2$$

- Radio waves, infrared, x-rays, Gamma rays. 28.
- 29. Up thrust = $PV \times 10 = 10 PV$
- Ultra violet releases electrons from zinc plate by thermal emission. 30. On removal of electrons, zinc becomes +vely charged.

Positive charge on zinc discharges/ neutralizes the charged on the electroscope.

Tension = centripetal force. 31.

$$T = Mv^2/r$$
 but $v = wr$

$$2 = 0.1 \times w^2 \times 0.33$$

$$T = Mw^2r$$
 $t = 0.2 \times 10 = 2N$

$$0.2 \times 10 = 2N$$
 $2N = Mw^2r$

$$2 = 0.1 \times w2 \times 0.03$$

- $-w^2 = 2/0.003 \text{ w } \sqrt{2000/3} \text{ w} = \sqrt{666.7}$ = 25.82 rads/s
- Object should be between F and lens. 32.

- Downwards into the paper. 33.
- A-earth wire 34.
- B live wire
- C neutral wire
- 35.
 - β $Z_{+1} + {}^{o} 1e$

Or Atomic number charges by / New is a head of the old or Z + 1

PHYSICS PAPER 232/2 K.C.S.E 1999. MARKING SCHEME

- 1a) Longitudinal waves - direction of the disturbance while ½ .Transverse waves direction of propagation is perpendicular to that of the disturbances.
- b i) $YP - XP = 2\lambda$
 - Dark fringes; crests and troughs arrive at the same time OK destructive ii) interferences Bright fringes; crests arrive together at the same time OR constructive interference.
 - No interference pattern because no diffraction takes place. iii)
- $T = (2.5 5) \times 10 3$ Ci) $= 20 \times 10 - 3 \times 10^3$

ii)

 $\sqrt{2gh}$

Average velocity at intervals AB and CD. 3i)

$$T = 1/50 \times 56$$

= 0.1s

$$V_{AB} = 1.5 \text{cm}/0.1 \text{s}$$

15 cm/s

$$V_{CD} = 3.2 \text{cm}/0.1 \text{s}$$

32cm/s

- Average acceleration of the trolley.
- V2 = U2 + 2gh mgh = 1/2MV2(b) $V = \sqrt{2gh}$

- Figure 5 represents a simple voltage amplifier circuit. 4a)
- Base current. b i)

Current gain =
$$\frac{\text{Collector current}}{\text{Base current}}$$
 p2 = $1_a/I_b$
 $62.5 = 2.5 \times 10-3$

$$I_b$$

$$\frac{\text{Ib} = 2.5 \times 10-3 = 40 \text{uA}}{62.5}$$

$$(4x10-5)A$$

IcRL =
$$Vcc = 5.5$$

RL = $\underline{5.5}$ = $2.2k\Omega$
 2.5×10^{-3}
 $10 - 4.5 = 5.5$ ICRL = 5.5
RL = $\underline{5.5}$
 2.5×10^{-3}

5a) Ammeter reading decreases.

The resistance of metals decreases with increase in temperature.

i)
$$P = V^2 = \frac{(240)^2}{100}$$
 $P = 576w$

ii)
$$P = VI$$

$$I = \underbrace{P}_{V} = \underbrace{576}_{240} = 2.4A$$

SECTION II

6a) Benzene sinks in liquid benzene.

Water increases in volume on solidifying while benzene reduces in volume; ice is less dense that liquid water. Solid benzene is denser that liquid benzene.

b i) Weigh the metal block in air and in water

Fill the overflow can in water and place on a bench / diagram

Collect the overflow in the beaker and weigh

Compare difference in weight of metal block and weight of overflow

Repeat Up thrust = tension + weight

$$\begin{array}{ll} \text{dist} = \text{tension} + \text{weight} \\ = (0.5 + 2.0) = 2.5\text{N} & \text{alternative} \\ \text{Weight of H2O}) = 2.5\text{N} & \text{Up thrust} = 2.5\text{N} \\ \frac{M_w}{V_w} &= 1000 & \text{R.D} = \frac{\text{Wt. in air}}{\text{Upthrust}} = \frac{2.0}{2.5} = 0.8 \\ \text{Vw} = 0.25 \text{ volume of wood} & \text{ €wood} \end{array}$$

0.25/100 0.2×1000

25

800 kg/m3

- c i) Time taken for half of the radio acute material to disintegrate.
 - ii) Correct readings for 60 and 30 time 25 + 2 minutes