PHYSICS PAPER 232/1 K.C.S.E 1999 MARKING SCHEME.

1. Reading on the vernier calipers

$$
0.5+0.01(5) \quad 0.5+0.05 \mathrm{~cm}=0.0055 \mathrm{~m} / 5.50 \mathrm{~mm}
$$

2. Third force F3 acting on the ruler is either upwards or downwards.

No: My must be at the centre.
3. Center of gravity rises when the body is tilted slightly and lowers when released / returns to original position.
4. Y must be below x

Reason: P water is greater than paraffin $=$ height of water required is therefore less than that of paraffin.
5. Cohesion between Hg molecules is greater than adhesion between Hg and glass molecules/cohesion force or adhesion. Force.
6. (NB: with or without labeling one mark.)

7. $\quad \alpha$ Particles are + vely charged, if majority deflected most \Rightarrow atom is empty.

Deflection \Rightarrow existence of a +vely charged nucleus.
Few deflected \Rightarrow nucleus is small/mass is concentrated at the centre
8. Angle of rotation of reflected ray=2(angle of rotation of mirror)

$$
=2 \times 30=60^{\circ}
$$

9. Charge concentrate at sharp point causing heavy discharge/ ionization neutralization, leaf falls off.
10. $\quad \mathrm{V}=\mathrm{IR} \Rightarrow \mathrm{I}=\mathrm{V} / \mathrm{R} \quad \mathrm{I}=3 /!=3 \mathrm{~A}$
$1 / R=1 / R 1+1 / R 2=2 / 2$
$1 / \mathrm{R}=1=\mathrm{R}=1$
11. $4 \mathrm{~mm}=20 \mathrm{~N}$

$$
\begin{array}{lc}
1.5=? & \mathrm{~F}=\mathrm{Ke} \\
1.5 \times 20 & \mathrm{~K}=\mathrm{F}=\underline{20}=5 \times 10^{3} \mathrm{~N} \\
4 & \mathrm{e} \quad 4 \times 10^{-3} \\
=7.5 \mathrm{~N} & \mathrm{~F}=5 \times 10^{3} \times 1.5 \times 10^{-3} \\
& =7.5 \mathrm{~N}
\end{array}
$$

12. -Dipping a magnet into a container with iron fillings, most of them will cling at the poles \Rightarrow

- Use of plotting compass to trace.

13.

14. Moment of couple $=$ Force x distance between forces.
$=10 \times 2=20 \mathrm{NM}$.
15. $\mathrm{F}=\mathrm{Ma}=70 \times 0.5 \quad \mathrm{~F} 35 \mathrm{~N}$

$$
35 \mathrm{~N}=20 \mathrm{a} \quad \mathrm{a}=\frac{35}{20} \quad=1.75 \mathrm{M} / \mathrm{s}^{2}
$$

16. $\mathrm{P}=$ force x velocity Power $=\mathrm{Fd} / \mathrm{t}=\underline{20 \times 10 \times 20}$

$$
\begin{array}{rlr}
\mathrm{Mg} \times \mathrm{h} / \mathrm{t} & =20 \times 10 \times{ }^{20} / 40 & 40 \\
& =100 \mathrm{w} & =100 \mathrm{j} / \mathrm{I}
\end{array}
$$

17. $\mathrm{F}=\mathrm{I} / \mathrm{T}=1 / 0.5={ }^{10} / 5=2 \mathrm{HZ}$

OR
$\mathrm{F}=$ No. of waves made in 1 second $=2 \mathrm{~Hz}$
OR
$F=\frac{\text { No of waves }}{\text { Time }}$
Time $\quad=2 / 1=2.5 / 1.25=2 \mathrm{~Hz}$
18. Beat frequency $\mathrm{f}=\mathrm{f} 2 \frown \mathrm{f} 1$

$$
\mathrm{F}=\mathrm{f} 2-\mathrm{f} 1
$$

$$
\begin{array}{ll}
=258-256 & 256-258 \\
=2 \mathrm{~Hz} & =/-2 /=2
\end{array}
$$

19. $\mathrm{P}=\mathrm{V} 1=15000=\mathrm{V} \times 2$

$$
150
$$

$$
\begin{array}{cl}
\mathrm{W}=\mathrm{QV} \text { but } \mathrm{Q}=\mathrm{It} & \mathrm{e}=\mathrm{I}^{2} \mathrm{Rt} \\
=\mathrm{V}=\mathrm{W} 15000 & 1500=2 \times 2 \times \mathrm{R} \times 60 \times 10 \\
\mathrm{Q} 60 \times 10 \times 2 & 60 \times 10 \times 2150=24 \mathrm{R} \\
\mathrm{~V}=12.5 \mathrm{v} & 25=4 \mathrm{R} \\
& \mathrm{~V}=\underline{25} \times 2 \\
& \mathrm{~V}=12.5 \mathrm{~V}
\end{array}
$$

12
12.5 V
20. Heat lost by substance $=$ heat gained by water

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{s}} \mathrm{C}_{\mathrm{s}} \triangle \theta_{1}=\mathrm{M}_{\mathrm{w}} \mathrm{C}_{\mathrm{w}} \triangle \theta 2 \\
& 2 \times 400 \times 60=\mathrm{M}_{\mathrm{w}} \times 4200 \times 1 \\
& \mathrm{M}_{\mathrm{w}}=\frac{2 \times 400 \times 60}{4200}=\frac{30}{7}=11.4 \mathrm{~kg}
\end{aligned}
$$

21. $\mathrm{V}=\mathrm{I}(\mathrm{R}+\mathrm{r})$
$5=\underline{10}(R+50) 500 \Rightarrow R+50 \Rightarrow R=500-50=450 \Omega$
22. Apparent depth $=30-10=20 \mathrm{~cm} \underline{\text { real depth }}=\underline{30}=1.5$
23. Kinetic energy ray / heat energy.
24. - Horizontal acceleration is zero because g component horizontally is 0
-Horizontal velocity remains constant

- Resultant horizontal force is zero
- resultant force is Zero.

25. $\quad \mathrm{V}_{2}$ is smaller than V_{1}
V_{1} is larger than V_{2}
26.

27. $\quad \mathrm{P}_{1}=1.03 \times 10^{5}$
$\mathrm{T} 1=20: \mathrm{C}=393 \mathrm{~K}$
$\mathrm{V} 1=\mathrm{V}$
$\mathrm{P}_{2}=$?
$\mathrm{V} 2=1 / 8 \mathrm{~V}$ or $\mathrm{v} / 8$
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \quad 1.03 \times 10^{5}-\mathrm{P}^{2} / 8 \quad=\mathrm{p}^{2}=3,24 \times 10^{5} \mathrm{~N} / \mathrm{M}^{2}$
28. Radio waves, infrared, x-rays, Gamma rays.
29. Up thrust $=\mathrm{PV} \times 10=10 \mathrm{PV}$
30. Ultra violet releases electrons from zinc plate by thermal emission.

On removal of electrons, zinc becomes + vely charged.
Positive charge on zinc discharges/ neutralizes the charged on the electroscope.
31. Tension $=$ centripetal force.

$$
\begin{array}{lll}
\mathrm{T}=\mathrm{Mv}^{2} / \mathrm{r} & \text { but } \mathrm{v}=\mathrm{wr} & 2=0.1 \times \mathrm{w}^{2} \times 0.33 \\
\mathrm{~T}=\mathrm{Mw}^{2} \mathrm{r} & \mathrm{t}=0.2 \times 10=2 \mathrm{~N} & 2 \mathrm{~N}=\mathrm{Mw}^{2} \mathrm{r}
\end{array} 2=0.1 \times \mathrm{xw} 2 \times 0.03
$$

32. Object should be between F and lens.

33. Downwards into the paper.
34. A-earth wire $\quad \mathrm{B}$ - live wire C neutral wire
35. $\mathrm{Z} \xrightarrow{\mathrm{Y}} \mathrm{Z} \xrightarrow{\beta} \mathrm{Z}_{+1}+^{\circ}-1 \mathrm{e}$

Or Atomic number charges by / New is a head of the old or $\mathrm{Z}+1$

PHYSICS PAPER 232/2 K.C.S.E 1999. MARKING SCHEME

1a) Longitudinal waves - direction of the disturbance while $1 / 2$. Transverse waves direction of propagation is perpendicular to that of the disturbances.
bi) $\quad \mathrm{YP}-\mathrm{XP}=2 \lambda$
ii) Dark fringes; crests and troughs arrive at the same time OK destructive interferences Bright fringes; crests arrive together at the same time OR constructive interference.
iii) No interference pattern because no diffraction takes place.
Ci) $\quad T=(2.5-5) \times 10-3$

$$
=20 \times 10-3 \mathrm{~s} 10^{3}
$$

ii)

2.a)

3i) Average velocity at intervals AB and CD .
$\mathrm{T}=1 / 50 \times 56$
$\mathrm{V}_{\mathrm{AB}}=4.5 \mathrm{~cm} / 0.1 \mathrm{~s}$
$\mathrm{V}_{\mathrm{CD}}=3.2 \mathrm{~cm} / 0.1 \mathrm{~s}$
$=0.1 \mathrm{~s}$ $15 \mathrm{~cm} / \mathrm{s}$
$32 \mathrm{~cm} / \mathrm{s}$
ii) Average acceleration of the trolley
(b) $\mathrm{V} 2=\mathrm{U} 2+2 \mathrm{gh} \mathrm{mgh}=1 / 2 \mathrm{MV} 2$
$\mathrm{V}=\sqrt{2 \mathrm{gh}}$
$\mathrm{V}=\sqrt{2 \mathrm{gh}}$
ci)

4a) Figure 5 represents a simple voltage amplifier circuit.
bi) Base current.

$$
\begin{aligned}
\text { Current gain }= & \frac{\text { Collector current }}{\text { Base current }} \quad \mathrm{p} 2=1_{\mathrm{a}} / \mathrm{I}_{\mathrm{b}} \\
& \frac{62.5=2.5 \times 10-3}{\mathrm{I}_{\mathrm{b}}} \\
& \frac{\mathrm{Ib}=2.5 \times 10-3=40 \mathrm{uA}}{62.5}
\end{aligned}
$$

ii) Load resistance, R_{L}
P.d across R_{L}

$$
\begin{aligned}
& \mathrm{IcRL}=\mathrm{Vcc}=5.5 \\
& \mathrm{RL}=\underline{5.5}=2.2 \mathrm{k} \Omega \\
& \frac{2.5 \times 10^{-3}}{} \\
& 10-4.5=5.5 \mathrm{ICRL}=5.5 \\
& \mathrm{RL}=\frac{5.5}{2.5} \times 10^{-3}
\end{aligned}
$$

5a) Ammeter reading decreases.
The resistance of metals decreases with increase in temperature.
i) $\quad \mathrm{P}=\mathrm{V}^{2}=\underline{(240)^{2}} \quad \mathrm{P}=576 \mathrm{w}$

$$
\text { R } \quad 100
$$

ii) $\quad \mathrm{P}=\mathrm{VI}$
$\mathrm{I}=\frac{\mathrm{P}}{\mathrm{V}} \quad=\frac{576}{240}=2.4 \mathrm{~A}$

SECTION II

6a) Benzene sinks in liquid benzene.
Water increases in volume on solidifying while benzene reduces in volume; ice is less dense that liquid water. Solid benzene is denser that liquid benzene.
bi) Weigh the metal block in air and in water
Fill the overflow can in water and place on a bench/diagram
Collect the overflow in the beaker and weigh
Compare difference in weight of metal block and weight of overflow
Repeat
Up thrust $=$ tension + weight

$$
=(0.5+2.0)=2.5 \mathrm{~N}
$$

Weight of H 2 O$)=2.5 \mathrm{~N} \quad$ Up thrust $=2.5 \mathrm{~N}$
$\underline{\mathrm{M}}_{\mathrm{w}}=1000$
V_{w}
$\mathrm{Vw}=0.25$ volume of wood 1000
Density of wood $=0.2$
$0.25 / 100$
$\frac{0.2 \times 1000}{25}$
25
$800 \mathrm{~kg} / \mathrm{m} 3$
c i) Time taken for half of the radio acute material to disintegrate.
ii) Correct readings for 60 and 30 time $25+2$ minutes

