PHYSICS PAPER 232 /1 K.C.S.E 2001 MARKING SCHEME

1. Volume removed $=11.5 \mathrm{~cm} 3$

Density $=\frac{\text { mass }}{\text { Volume }}=\frac{22}{11.5} 1.9 \mathrm{~cm}^{-3}$
2. Weight on side A has bigger volume when water is added.
3. Centre of gravity of A is at (geometric) centre while that of B is lower when rolled. Centre of gravity of A stays in one position while that of B tends to be raised resisting motion as it resists; thus slowing down B . OR B there is friction force between the surfaces which resists motion.
4. No air on moon surface / no air pressure / no atmosphere.
5. When the permanganate dissolves / or breaks up into particles (molecules) these diffuse through the water molecules
6. When rises up the tube into the flask or water is sucked into the tube or bubbles are seen momentally.
7. Cold water causes air in the flask to contract // reduces pressure inside flask or when cold water is poured it causes a decrease in volume of air the flask or pressure increases in the flask // volume of the flask decreases.
8.

9. Point action takes place at sharp points (A, B , C, D), charge concentrates at sharp points causing high pd, this causes air the surrounding to be ionized. The positive ions are repelled causing points to move in opposite direction.
10. By forming hydrogen layer / cover or hydrogen atoms or molecules which insulate the copper plate OR forming it cells between hydrogen and zinc which opposes the zinc copper cell or by forming a hydrogen layer / cover which increases internal resistance.
11.

12. $\quad \mathrm{F}_{2} \mathrm{~F}_{3}$ or F_{1} and F_{4}
13. Moment of a couple $=$ one force x distance between the two forces.

Distance between F_{1} and $\mathrm{F}_{4}=0.8 \sin 30^{\circ}$. Moment $=0.8 \sin 30^{\circ} \times 100=10 \mathrm{NM}$ Alternative (F_{2} and F_{3})

Moment $=\mathrm{f} \times 1 \mathrm{M}=60 \mathrm{~N} \times 1 \mathrm{M}=60 \mathrm{nM}$ (or J)
14. $\begin{aligned} & \mathrm{V} 2-\mathrm{U} 2=2 \mathrm{aS} \quad \text { OR } \mathrm{S}= \\ & 1502-3002=2 \mathrm{a}(0.5)\end{aligned}\left(\frac{\mathrm{v}+\mathrm{u}}{2} \mathrm{t}\right)$

$$
\begin{aligned}
& \begin{array}{l}
a=-67,500 \mathrm{~ms}^{-2} \quad 0.5= \\
\text { or deceleration }=67,500 \mathrm{~ms}^{-2}
\end{array} \quad\binom{V=150 \mathrm{~m} / \mathrm{s} q \mathrm{l}=300 \mathrm{~m} / \mathrm{s} \mathrm{~s}=0.5}{\frac{300+150 / \mathrm{t}}{2}} \mathrm{t}=1 / 450 \mathrm{~s} \\
& \mathrm{a}=\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}}=\frac{150-300}{1 / 450}=-667,500 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

15. \quad Efficiency $=\frac{\text { work done by machine x } 100}{\text { Work done on machine }} \quad E=\frac{\text { work out x } 100}{\text { Work input }}$
; Work done on machine $($ work input $)=550,000 \mathrm{j}$.
16.

17. $\mathrm{R}=\mathrm{V} / \mathrm{I}=1.5 / 0.1=15^{\prime} \Omega$

Fig. 10

$$
\mathrm{R}=15^{\prime} \Omega-12^{\prime} \Omega=3^{\prime} \Omega
$$

OR $E=1(\mathrm{R}+\mathrm{r})$

$$
\begin{array}{rlr}
1.5 & =0.1(12+\mathrm{r})=1.5=1.2+0.1 \mathrm{r} \\
0.3 & =0.1 \mathrm{e}=\quad \mathrm{r}=0.3 / 0.1^{\prime} \Omega \\
\mathrm{R} & =3^{\prime} \Omega .
\end{array}
$$

18. Current in heater $=\frac{\mathrm{p}}{\mathrm{V}}=\frac{3000}{240}=12.5 \mathrm{~A}$

Fuse not suitable since current exceed the fuse value.
19. Heat loss will be higher in A

Methylated spirit will boil faster / evaporates / more volatile causing loss of heat through latent heat of vaporization.
20.

21.

22.

23.

24. Since masses are the same, there are more hydrogen molecules than oxygen molecules/more collision in B than in A and hence more pressure in B. Collision in B is higher than in A .
25.

(i) Fundamental mode

(ii) $2^{\text {nd }}$ harmonic

(ii) $3^{\text {bl }}$ hurmonic.
26. $\mathrm{Fh}=\mathrm{f} 1-\mathrm{f} 2$

OR Fh $=\mathrm{f} 1-\mathrm{f} 2$
Fh $=6-4$
$=6.25 \mathrm{~Hz}-4 \mathrm{~Hz}$
$\mathrm{Fh}=2$
$=2.25 \mathrm{~Hz}$.
27. Longer radio waves are easily diffracted around hills/ radio waves undergo diffraction easily.
28. Tension in $\mathrm{A}=1.05 \mathrm{~N}-1.0 \mathrm{~N}=0.05 \mathrm{~N}$

Tension in $\mathrm{B}=$ tension due to $\mathrm{A}+$ Tension due to B
29.

30.

32.

$$
\begin{aligned}
\mathrm{E}=\mathrm{pt} & =60 \times 30 \times 60 \times 60 \mathrm{~J} & & \mathrm{E}=60 / 1000 \mathrm{~kW} \times 36 \mathrm{hrs} \\
\mathrm{In} \mathrm{kWh} & =\frac{60 \times 36+60 \times 60 \mathrm{~J}}{1000 \times 60 \times 60} & & \mathrm{E}=0.06 \times 36 \\
& =2.16 \mathrm{~Wh} & & \mathrm{E}=2.16 \mathrm{kWh}
\end{aligned}
$$

33. Pd across Anode - cathode

Or anode potential (voltage)
34. $r-\beta$ (Beta)or ie
$B=82$
$\mathrm{C}=206$

PHYSICS PAPER 232/2 K.C.S.E 2001. MARKING SCHEME

1. Let final temperature be T

Heating gained by melted ice $\mathrm{MCT}=0.040 \times 340,000 \mathrm{~J}$
Heat lost by water. $=$ MC $0.040 \times 4200 \times(20-\mathrm{T}) \mathrm{J}$
Heat gained $=$ Heat lost

$$
13600 \mathrm{~J}+168 \mathrm{TJ}=1680(20-\mathrm{T}) \mathrm{J} \quad \mathrm{~T}=10.8^{\circ} \mathrm{C}
$$

2 a i) So as to have opposite polarity on the poles.
ii) since the current is varying with time; it causes the current in the solenoid to vary, with time causing the diaphragm to vibrate this vibration is at the frequency of speech; hence reproducing speech.
iii) No vibration/receiver does not work, steel core pieces would become permanent magnet/so force of attraction would not be affected by variation in speech current.
b) $\quad \underline{N}_{\mathrm{p}}=\mathrm{V}_{\mathrm{p}}$

$$
\overline{\mathrm{N}}_{\mathrm{s}}=\mathrm{V}_{\mathrm{s}}
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{s}}=\frac{240}{400} \mathrm{x} 20=12 \mathrm{v} \\
& \\
& \begin{array}{l}
\mathrm{V}_{\mathrm{s}}=\mathrm{V} / \mathrm{R}=12 / 50 \\
\mathrm{I}_{\mathrm{s}} \text { Peak }
\end{array}=0.24 \mathrm{~A} \times 2 \\
& =0.34 \mathrm{~A}
\end{aligned}
$$

3. a) Fill tray with water to the brim and level on bench; sprinkle lycopodium powder on the water surface either pick an oil drop with kinked wire; and measure the volume of a drop; put one drop at centre of the tray let oil spread and measure maximum diameter d of the patch; hence reproducing speech.
b) Hydrogen since its less dense it diffuses faster.
c) $\mathrm{p}=\mathrm{pgh} ; \quad$ Or mass $=\mathrm{D} \times \mathrm{V}$

$$
=1000 \times 2 \times 10
$$

$$
=1000 \times 2 \mathrm{x} / 1000
$$

$1-\mathrm{p} \triangle$
$=100 \times 10 \times 10 \times 2 \times 2 \times 10^{-4}=0.4 \mathrm{~kg}$
$=4 \mathrm{~N}$

$$
=0.4 \times 10 \quad=4 \mathrm{~N}
$$

4. i) Filament heats up cathodes; causing electrons to boil off the cathode.
ii) Grid controls brightness of spot since it is negatively charged it repels the electrons reducing number of electrons
iii) A vertical line would appear/spot oscillates vertically
iv) Deflection in TV is by magnetic fields.
v) Magnetic field produces greater deflection on electrons beam allowing wider screen.
b) Energy released $\triangle E=E_{f}-E_{i}=5.44 \times 10^{-19} j=4.08^{-19} j$

$$
\begin{aligned}
& \triangle \mathrm{E}=\mathrm{hf} \quad \mathrm{~h} \frac{\mathrm{C}}{\lambda} \\
& \lambda=\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8} \mathrm{~m}}{4.08 \times 10^{-19}}
\end{aligned}
$$

$$
=4.88 \times 10-7 \mathrm{~m}(4.87-4.90)
$$

5a)

bi) $\quad \mathrm{IE}=\mathrm{IC}+\mathrm{IB}$
$100+0.5$
$=100.5 \mathrm{~mA}$
(ii) $\beta=$ Ic $/ \mathrm{IB}=\frac{100}{0.5}=200$

SECTION II.

6 a i) A body at rest or in motion at constant velocity stays in that state unless acted on by an unbalanced force; the rate of change of momentum of a body is directly proportional to the force acting on the $\operatorname{body}(\mathrm{F}=\mathrm{ma})$ for every action, there is and equal and opposite reaction: any one for;
(ii)

$\mathrm{V}^{2}\left(\mathrm{M}^{2} / \mathrm{s}^{2}\right)$	0.04	0.16	0.36	0.64	1.00	1.44

Graph - see graph papers
Scale
Line - 4 point

Axis - labels
Plot - 5.56 point
Slope $=\frac{1.24-0.100}{0.210-0.016}=5.88+0.27$
b) $\quad \mathrm{V} 2+\mathrm{u} 2=2 \mathrm{as}$

When $\mu=0$
$\mathrm{V} 2=2 \times 0.5 \times 100$
Momentum $=\mathrm{mv}=200 \times 1000 \times(2 \times 0.5 \times 100)$
$\quad 2.0 \times 10^{6} \mathrm{kgs}^{-1}$
OR $\quad S=1 / 2 a^{2}$
T $=100 \times 2$
$\mathrm{T}=20 \mathrm{sec} \quad$ Momentum $\mathrm{p}=\mathrm{Ft}$
$\mathrm{F}=\mathrm{ma}$
$-200 \times 1000 \times 0.5=10^{6}$
7 a i) The pressure of a fixed mass of an ideal gas is directly proportional to the absolute temperature provided the volume is held constant.
ii)

$\mathrm{I} / \mathrm{V}\left(\mathrm{m}^{3}\right)$	40.0	5	58.8	71.4	83.3	90.9

Graph - see graph paper
Scale
Line - 4 points
Slope $4.24-2.00 \times 105$
86-40
$=4.87 \times 10^{3} \mathrm{paM}^{3}$
$=4.94 \pm 0.65$
Slope $=4.94 \pm 0.65$
Slope $=2 R T$
$\mathrm{R}=4.87 \times 10^{3}$
2×300
$=8.12 \mathrm{NM} / \mathrm{K}$ or JK
$=8.23 \pm 0.11$
b) $\quad \mathrm{P} 1=\mathrm{P} 2$
$\mathrm{T} 1=\mathrm{T} 2$
$\mathrm{T} 1=12+272=285$
$\mathrm{T} 2=88+273=361$
$\mathrm{P} 2=\underline{1.0 \times 105 \times 361}$
285

$\mathrm{I} / \mathrm{P} \times 10^{5}(\mathrm{pa}-1)$	0.5	0.40	0.33	0.29	0.25	0.22

$\mathrm{Y}=$ intercept $=3.8 \mathrm{Log} 600 \mathrm{R}$
$600 \mathrm{r}=6309.57$
$\mathrm{R}=10.5+5.0$

Axis - labels
Plot - 5-6 points

