PHYSICS PAPER 12004 MARKING SCHEME

1. $15.5+0.33=15.83 \mathrm{~mm} / 1.583 \mathrm{~cm}$
2. Air in the balloon expands/volume of balloon increases; displaces more air raising the up thrust of air;
3 i) Stability reduced/Lower /less stable
-Upper section heavier/hollow section becomes heavy/more massive top

- Raising the c.og of the block.

4. Density of water is low/It will result to a very log barometer/ very long tube
5.

NB at $4^{0} \mathrm{c}$ graph must be curved

- 4^{0} must be marked
- If drawn using a ruler N 0 mk
- If $20^{\circ} \mathrm{c}$ is marked, it must be higher than $0^{\circ} \mathrm{c}$

6. Wooden Block

Wooden block is a poor conductor of heat all the heat goes in melting the wax.
7. NB- Check correct rays with arrows.

- at least one angle on each reflecting surfaces must be marked.

8.

9. To depolarize/ oxidizer/ reduces polarization/oxidizes H_{2} to H_{2} to $\mathrm{H}_{2} 0$ /Changes H_{2} to $\mathrm{H}_{2} 0 /$ removes H_{2} (any give 1 mark)
10. Adding detergent/Impurities/increasing temp/heating (Any give 1 mk)
11.

-correct pattern

- correct direction

NB- at least 4 lines of forces must be shown

- Lines of forces must start at the poles.

12.

NB forces must be straight
Lines must touch a conduct
13. Increasing current/increasing no. of turns or length of coils/ increase strength of field same as moving magnet close to core $\&$ using U shaped winding coil on soft iron core/increasing the angle between conductor and the field. (give any 2 mks)
14. Sum of clockwise moment=sum of anticlockwise moments

Wx20=30x5
$2 \mathrm{w}=15$
Higher, reducing the current.
16. Either in (10b)current from each cell is less than in (10 a)

Or
Power supplied in 10(b) is less than in 10(a)
17. Distance $=$ Area under graph

$$
\begin{aligned}
& =2 \times 1 / 2 \times 2 \times 20 \\
& =40 \mathrm{~m} \\
& \text { Or } \mathrm{s}=\mathrm{ut}+1 / 2 \mathrm{at}^{2} \\
& \mathrm{~S}=2(20)+1 / 2(-10) 4 \\
& \mathrm{~S}=20 \\
& \mathrm{~S}=2 \mathrm{x} 20 \\
& 40 \mathrm{~m}
\end{aligned}
$$

18. $\mathrm{W}=\mathrm{Fd}$

$$
\begin{aligned}
& \mathrm{Mg} \sin \theta \\
= & 60 \mathrm{x} 10 \mathrm{x} 0.5 \times 4 \\
= & 1200 \mathrm{~J}
\end{aligned}
$$

19. Electromagnetic
-can travel through vacuum
-Travel at speed of light
-are faster

- Does not necessarily

Refuse a material media

Mechanical

- Cannot travel through a vacuum
- Travel at varying speeds
- are slower
- Refuse a material media

20. \quad Either $\mathrm{p}=\mathrm{VI}=\mathrm{V} 2 / \mathrm{r}$

When V reduces power reduces
So rate of heating reduces
Or V=IR
$\mathrm{P}=\mathrm{I} 2 \mathrm{R}$ (reducing IR reduces power so rate of heating reduces.
21. $E=p t t=450-150=300 \mathrm{~s}$
$\mathrm{E}=50 \times 300$
$1=150,000 \mathrm{~J}$
22. $\mathrm{Q}=\mathrm{ml}$
$15000=0.1 \times 1$
$1=150,000 \mathrm{~J} / \mathrm{kg}$
23.

24. -Correct rays must be refracted to the eye and should be diverging.
-Dotted lines should show image position. (-should not have arrows-must intersect within container)

25. Plasticine increases mass of body since momentum is conserve or weight of trolley/normal reaction increases so fiction forces increases or Mass of trolley increases, the driving force being constant.
26. Either on closing on closing s_{1} while s_{2} open
$\mathrm{Q}=\mathrm{CV}=3 \mathrm{C}$
When s_{1} is open s_{2} closed charge is shared between the two capacitors
$\mathrm{CT}=\mathrm{C}+\mathrm{C}=2 \theta$
Since q is the same equal to $3 \mathrm{C}_{1}$ the new $\mathrm{pd}=\mathrm{V}_{1}$
$\mathrm{Q}=\mathrm{CTV}_{1}=3 \mathrm{C}$
$\mathrm{V}_{1} \quad=1.5 \mathrm{~V}$
Or
S_{1} closed S_{2} open lower capacitor charges to 3 V
S_{1} open S_{2} closed lower capacitor charges the upper to same charge (p.d)
Final pld $={ }^{3} / 2 \mathrm{~V}=1.5 \mathrm{~V}$
Or
$\mathrm{Q}=\mathrm{CV}=3 \mathrm{C}$
S_{2} closed charge is shared
$\mathrm{CV}=\mathrm{Q} / 2$
$\mathrm{V}=\mathrm{QC} / 2 \mathrm{C}={ }^{3 \mathrm{C}} / 2 \mathrm{C}=1.5 \mathrm{~V}$
27. Either $\mathrm{V} 1 / \mathrm{T} 1=\mathrm{V} 2 / \mathrm{T} 2$
${ }^{200} /{ }_{293}=\mathrm{V} 2 / 353$
$\mathrm{V} 2=241 \mathrm{ml}$
Or V=KT
$200=293 \mathrm{~K}$
$\mathrm{K}=0.6828$
$\mathrm{V}_{2}=0.6828 \times 353$
$\mathrm{V}_{2}=240.96 \mathrm{ml}$
The other answers for
$\mathrm{V}_{2} 240.9 / 240.94 \mathrm{ml}$
28.

X-rays
-produced by fast moving electrons nucleus
-Produced due to energy changes in
Level of atoms
-Produced when energy changes in Electronic structure of atoms

Gama Rays
-As a result of disintegration of
-due to energy changes with nucleus Of atoms
-produced due to change in nucleus Of atoms.
(Any one comparison give 1 mk)
29.
$\mathrm{T}=\mathrm{Mv} 2 / \mathrm{r}$
$81=\mathrm{MV} 2 / \mathrm{r}$
$81=5 \mathrm{~V} 2 / 0.5$
or $\mathrm{T} \sin \theta-\mathrm{mv} / \mathrm{r}$
$\theta=86.46$
$\mathrm{r}=0.488$
or $\tan \theta={ }^{\mathrm{V} 2} / \mathrm{rg}$ $\mathrm{V}^{2}=0.499 \mathrm{x} 86.4$
$\mathrm{V}^{2} 80.63$
$\mathrm{V}=9 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& \mathrm{V}^{2}=0.499 \times 81 \times 0.9981 / 0.5 \\
& \mathrm{~V}^{2}=80.70 \\
& \mathrm{~V}=8.983 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\mathrm{V}=8.979 \mathrm{~m} / \mathrm{s}
$$

30

NB. At least three ware forms must be drawn.
Ware length (spacing) must be maintained

Check-at least Three complete troughs/Crest

- Amplitude range 6.5 squares
8.5 squares

33.

X-rays (Hard)
-Shorter Wavelength
-More energetic
-High Frequency
-Produced by high voltage
-Produced by fast moving electrons
34. $\mathrm{hf} 0=\mathrm{Wc}=\boldsymbol{\theta}$

Fo $\quad=\mathrm{Wc} / \mathrm{h}=32 \times 16 \times 10 / 6.62 \times 10-34$
$=\quad 7.73 \times 10^{14} \mathrm{H} 2$ or $7.732 \times 10^{14} \mathrm{H} 2$ or $7.734 \times 10^{14} \mathrm{H}_{2}$

Soft-rays

-Longer wavelength
-Less penetrating
-Low frequency
-Produced by low voltage.
-Produced by slow moving e -electrons

$$
=7.73 \times 10^{14} \mathrm{H} 2 \text { or } 7.732 \times 10^{14} \mathrm{H} 2 \text { or } 7.734 \times 10^{14} \mathrm{H} 2
$$

PHYSICS PAPER 22004 MARKING SCHEME

1.

a)

Equye:

i) Up thrust $=0.49 \mathrm{~N}$
ii) Up thrust=weight of liquid displaced (Archimedes Principle) $=0.4 \mathrm{~N}$
Mass of Liquid $\quad=0.049 \mathrm{~kg}=49 \mathrm{~g}$ (converting m to kg or g)
Volume of liquid $\quad=6.2 \times 4.5$

$$
=27.9 \mathrm{~cm}^{3}
$$

Density $=$ Mass $/$ Volume $\quad=4.9 / 27.9 \mathrm{~g} / \mathrm{cm}^{3}=1.760 \mathrm{~kg} / \mathrm{m}^{3}$
b)
2. a) i) Mass m_{1} of melted ice/mass of water. Time t_{1} take

iii) Part of heat produced by heater is wasted temperature of ice may be lower than zero.
b) i) When oil drop is placed at the centre of tray, oil spreads on water until it is one molecule thick producing patch (monolayer)
ii) Volume of drop $=4 / 3 \Omega r^{3}=\Omega r^{2} \mathrm{~h}(\mathrm{r}=$ radius of drop) Volume of patch $=\Omega r^{2} h$ ($h=$ Thickness of molecule)

$$
\begin{aligned}
& 4 / 3 \Omega r^{3}=\Omega r^{3} / \Omega r^{2} \mathrm{~h} \text { (equating) } \\
& \mathrm{H}=4 / 3 \Omega \mathrm{r} 3 / \Omega \mathrm{r}^{2}+2=4 \mathrm{x}(0.25)^{3} / 3 \mathrm{x}(100)^{2} 2.1 \times 10^{-6} \mathrm{~mm}
\end{aligned}
$$

Because oil does not necessary spread to a monolayer/ one molecule thick or Big errors in radius of oil drop and patch or errors in measurement of diameter/radius.
iii) Put oil in a burette and read level, let 100 drops fall and read new level, obtain radius using $4 / 3 \Pi r^{3}=$ Volume
or
Obtain thin wire and make Kink; deep in oil and let drop form on kink use a milimetre scale to measure diameter of drop.
3. a) i) Produce alcohol vapour

Cools alcohol vapour below condensation temperature or cools air so that alcohol vapour condenses.
ii) Radiation from source ionizes air along its path; alcohol condenses around these ions; forming droplets or traces; nature of traces identifies radiation.
iii) Can detect,_ While electroscope on, can identify nature of radiations, is more sensitive.)
b)i)

ii) Delayed 1×10^{20} $1 / 2 \times 10^{20}-$ \qquad $1 / 4 \times 10^{20}$ \qquad $1 / 8 \times 10^{20}$

$$
=0.125 \times 10^{20}=1.25 \times 10^{20}
$$

Left 1×1020-------- $1 / 8=0.875 \times 1020$
(Subtraction) $\quad=8.75 \times 1019$ Atoms.
4. a) i) 0.30 cm
ii) $0.65-0.25=0.4 \mathrm{Sec}$.
iii) $\mathrm{f}=1 / \mathrm{T}=1 / 0.42 .5 \mathrm{HZ}$
iv) $V=\mathrm{fx}=\mathrm{V} / \mathrm{x}={ }^{200} / 25=80 \mathrm{~cm}=0.8 \mathrm{~m}$
b. i)

ii) $\mathrm{m}=\underline{\mathrm{ht} \text { of Image }}=\underline{\text { distance } \text { of image }}$ ht of object distance of object
${ }^{\mathrm{h} 0} / 200=25 / 5 \mathrm{~h} 0=200 \times 25 / 5=100 \mathrm{~m}$
5. a) i) -Increasing me of turns/coils
-Increasing speed (rate) of rotation
b) In a motion produces Eddy currents. These cause force to act on plate causing damping in B Eddy currents are reduced by slots
c) $\quad \mathrm{Rms}=\mathrm{V}$ peak $/ 2$

V peak $=12 \times 14142=16.97 \mathrm{v}=17 \mathrm{v}$
6 a) One turning fork is loaded with a small amount of plasticine sounding together again one can produce detectable beats.
b) i) ${ }^{1} / \mathrm{f} \times 10^{-3}\left(\mathrm{H}_{3}^{-1}\right) 3.913 .52 .92 .32 .12 .0$

12-11 0.650 .570 .480 .390 .340 .32
ii) \quad Slope $($ Gradient $\left.)=\frac{\mathrm{V}}{2}=(0.67-0.10) \mathrm{m} / 4.0-0.75\right) \times 10^{-3} \mathrm{H} 3^{-1}$

$$
\mathrm{V}=340^{10 \mathrm{~m} / \mathrm{s}}
$$

iii) Sound waves entering tube is reflected at water surface forming standing wares with incoming wares, when an antinode is at the mouth loud sound is heard. By adjusting length of air column this can be achieved.
7. i) Photoelectric effect- is the emission of electrons from a surface when radiated with radiations of sufficient frequency.
Correct circuit must work i.e cathode connected to (-ve) Emphasize on mA cell connected and v in parallel
ii) \quad Slope $=1.28-0.10 /(7.7-4.8) \times 1014$
$\mathrm{h}=$ Slope x e
$=1.18 \times 1.6 \times 10-19 / 29 \times 1014$
$=6.51 \times 10-34 \mathrm{JS}$
(5.82-6.66) x 10-34 JSAlt - Selecting 2 pts from graph

- Substitution in simultaneous equs
-Value of h
-Value of \varnothing
Fs $($ Threshold Frequency $)=4.55 \times 1014$ (where graph cuts the axis)

$$
\text { Range }(4.4-4.6) \times 20^{14}
$$

Work function $\varnothing=6.51 \times 10^{-34} \times 4.55 \times 10^{14}$

$$
=2.96 \times 10^{-19} \mathrm{~J}
$$

Range (2.56-3.06) $\times 10^{-19} \mathrm{~J}$
c) $\quad 1 / 2 \operatorname{mv} 2 \max =h f-\varnothing$
$h f=6.51 \times 10 \times 3 \times 10^{15}$
KE max $=1.953 \times 10^{-18}-6.4 \times 10^{-19}$
$=1.31 \times 10^{-18}$
Range ($1.12-1.31$) $\times 10^{-18} \mathrm{~J}$

