

29.5.1 Physics Paper 1 (232/1)

SECTION A (25 marks)

Answer all questions in this section in the spaces provided.

In an experiment to measure the density of a liquid, a student filled a burette with a liquid to the 0cm³ mark. Figure 1 shows a section of the burette showing the level of the liquid after 54.5g of the liquid had been run out.

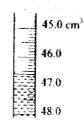


Figure 1

Determine the density of the liquid.

(3 marks)

- In an experiment to determine the acceleration due to gravity, g, a student measured the period, T, and length, L, of a simple pendulum. For a length L = 70.5cm, the period T obtained was
 1.7s. Given that T = 2π√L/g, determine the value of g correct to two significant figures: (2 marks)
- A steel needle when placed carefully on water can be made to float. When a detergent is added to the water it sinks. Explain this observation. (2 marks)

Figure 2 shows two cylinders containing a liquid and connected with a tight-fitting flexible tube. The cylinders are fitted with air-tight pistons A and B as shown.

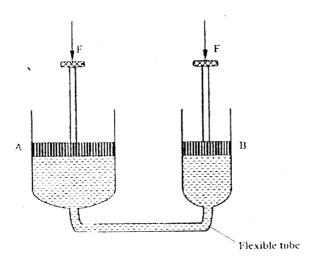


Figure 2

When equal forces, F, are applied on the pistons as shown, it is observed that piston A moves up while B moves down. Explain this observation. (2 marks)

Two identical beakers A and B containing equal volumes of water are placed on a bench. The water in A is cold while in B it is warm. Identical pieces of potassium permanganate are placed, gently at the bottom of each beaker inside the water. It is observed that the spread of colour in B is faster than in A. Explain this observation. (2 marks)

A clinical thermometer has a constriction in the bore just above the bulb. State the use of this constriction. (1 mark)

Use the following information to answer questions 7 and 8

Two identical empty metal containers P and Q are placed over identical bunsen burners and the burners lit. P is dull black while Q is shiny bright. After each container attains a temperature of 100°C the burners are turned off. Identical test tubes containing water are suspended in each container without touching the sides as shown in Figure 3.

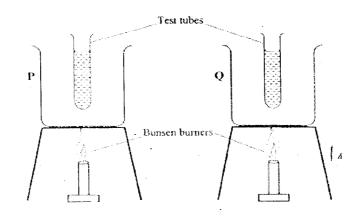


Figure 3

7 Explain why the container Q may become hot faster than P.

8 Explain why the water in test-tube in P becomes hot faster than in Q.

(2 marks)

Figure 4 shows a uniform cardboard in the shape of a parallelogram.

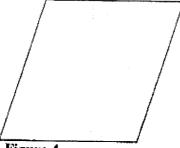


Figure 4

Locate the centre of gravity of the cardboard.

(1 mark)

The three springs shown in Figure 5 are identical and have negligible weight. The extension produced on the system of springs is 20cm.

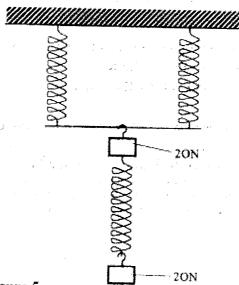


Figure 5

Determine the constant of each spring.

(2 marks)

11 Figure 6 shows two inflated balloons hanging vertically on light threads.

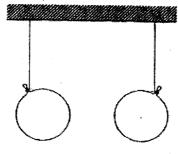
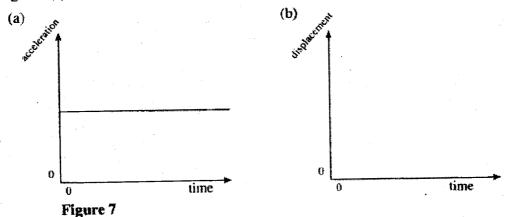



Figure 6

When a stream of air is blown in the space between the balloons, they are observed to move towards each other. Explain this observation. (1 mark)

12 Figure 7(a) shows the acceleration-time graph for a certain motion.

On the axes provided in Figure 7 (b), sketch the displacement-time graph for the same motion. (1 mark)

13 State what is meant by absolute zero temperature (Zero kelvin or -273°C).

(1 mark)

A turntable of radius 8cm is rotating at 33 revolutions per second. Determine the linear speed of a point on the circumference of the turntable. (3 marks)

SECTION B (55 marks)

Answer all the questions in this section in the spaces provided.

(a) State two factors that affect the boiling point of a liquid.

(2 marks)

(b) 100g of a liquid at a temperature of 10°C is poured into a well lagged calorimeter.

An electric heater rated 50W is used to heat the liquid. The graph in Figure 8 shows the variation of the temperature of the liquid with time.

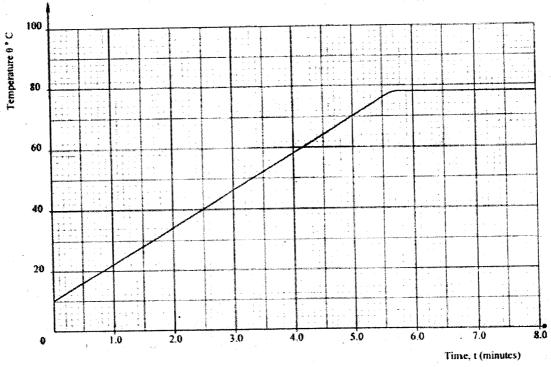


Figure 8

15

- (i) From the graph, determine the boiling point of the liquid. (1 mark)
- (ii) Determine the heat given out by the heater between the times t = 0.5 minutes and t = 5.0 minutes. (2 marks)
 - (II) From the graph determine the temperature change between the times t = 0.5 minutes and t = 5.0 minutes. (1 mark)
 - (III) Hence determine the specific heat capacity of the liquid. (2 marks)
- (iii) 1.8g of vapour was collected from above the liquid between the times t = 6.8 minutes and t = 7.3 minutes. Determine the specific latent heat of vaporization of the liquid. (4 marks)
- 16 (a) Define the term efficiency of a machine.

(1 mark)

(b) Figure 9 shows a drum of mass 90 kg being rolled up a plane inclined at 25° to the horizontal. The force F applied is 420N and the distance moved by the drum along the plane is 5.2m.

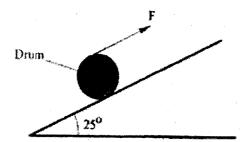


Figure 9

Determine:

(i) the work done by the effort:

(3 marks)

(ii) the work done in raising the drum;

(3 marks)

(iii) the efficiency of the inclined plane as a machine.

(2 marks)

17 (a) State the law of flotation.

(1 mark)

(b) Figure 10 shows a rectangular metal block of density 10500 kgm³ and dimensions 30cm x 20cm x 20cm suspended inside a liquid of density 1200 kgm³ by a string attached to a point above the liquid. The three forces acting on the block are; the tension T, on the string, the weight W, of the block, and the upthrust, U, due to the liquid.

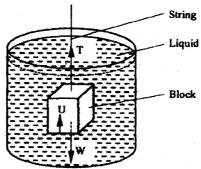


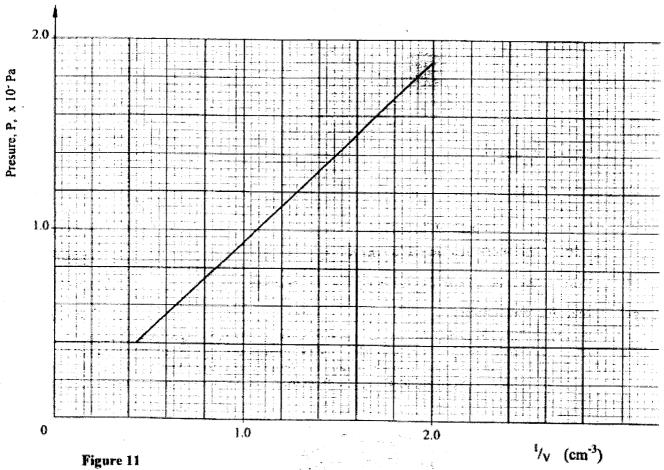
Figure 10

- (i) Write the expression relating T, W and U when the block is in equilibrium inside the liquid. (1 mark)
- (ii) Determine the weight, W, of the block.

(3 marks)

Determine the weight of the liquid displaced by the fully submerged (iii)

(2 marks)


(iv)Hence determine the tension, T, in the string.

(1 mark)

- A certain solid of volume 50cm3 displaces 10cm3 of kerosene (density 800 kgm3) (c) when floating. Determine the density of the solid. (4 marks)
- 18 (a) State the pressure law for an ideal gas.

(1 mark)

An air bubble is released at the bottom of a tall jar containing a liquid. The height of the (b) liquid column is 80cm. The volume of the bubble increases from 0.5cm3 at the bottom of the liquid to 1.15 cm³ at the top. Figure 11 shows the variation of pressure, P, on the bubble with the reciprocal of volume, $\frac{1}{2}$, as it rises in the liquid.

- - State the reason why the volume increases as the bubble rises in the liquid (i) (1 mark)
 - From the graph, determine the pressure on the bubble: (ii)
 - **(I)** at the bottom of the liquid column:

(II) at the top of the liquid column.

(I mark)

(iii) Hence determine the density of the liquid in kgm³.

(3 marks)

(I mark)

- (iv) What is the value of the atmospheric pressure of the surrounding?
- (c) A rubber tube is inflated to pressure of 2.7 x 10⁵ Pa and volume 3800 cm³ at a temperature of 25°C. It is then taken to another place where the temperature is 15°C and the pressure 2.5 x 10⁵ Pa. Determine the new volume. (4 marks)
- 19 (a) Define angular velocity.

(1 mark)

(b) Three masses are placed on a rotating table at distances 6cm, 9cm and 12cm respectively from the centre of rotation. When the frequency of rotation is varied, it is noted that each mass slides off at a different frequency of rotation of the table. Table I shows the frequency at which each mass slides off.

Table 1

Radius r (cm)	12	9 .	6
Sliding off	0.68	0.78	1.0
Frequency, f. (rev/s)			

- (i) State two factors that determine the frequency at which each mass slides off. (2 marks)
- (ii) Oil is now poured on the table before placing the masses. Explain the effect of this on the frequency at which each mass slides off. (2 marks)
- (c) Figure 12 shows a flywheel of radius 14cm suspended about a horizontal axis through its centre so that it can rotate freely about the axis. A thread is wrapped round the wheel and a mass attached to its loose end so as to hang at a point 1.26m above the ground.

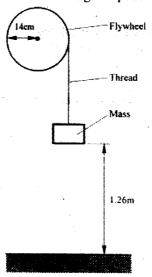
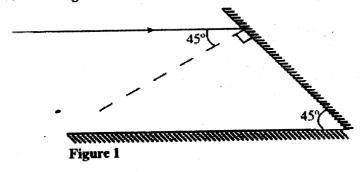


Figure 12

When the mass is released, it accelerates at 0.28ms⁻². Determine the angular velocity of the wheel just before the mass strikes the ground. (4 marks)

29.5.2 Physics Paper 2 (232/2)


SECTION A (25 marks)

Answer all the questions in this section in the spaces provided.

State the number of images formed when an object is between two plane mirrors placed in parallel.

(1 mark)

2 Figure 1 shows a ray of light incident on a mirror at an angle of 45°. Another mirror is placed at an angle of 45° to the first one as shown.

Sketch the path of the ray until it emerges.

(2 marks)

- A conductor is slowly brought near the cap of a positively charged electroscope. The leaf first collapses and then diverges. State the charge on the conductor. (1 mark)
- Give a reason why it is necessary to leave the caps of the cells open when charging an accumulator.
 (1 mark,
- An electromagnet is made by winding insulated copper wire on an iron core. State two changes that could be made to increase the strength of the electromagnet.

(2 marks)

6 Figure 2 shows how the displacement varies with time for a certain wave.

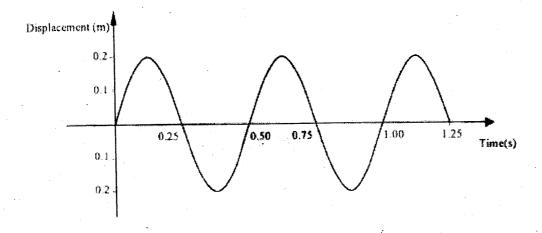
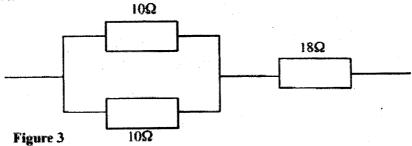
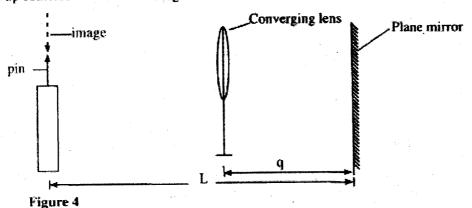



Figure 2


- Determine the speed of light in water given that the speed of light in air is 7 3.0×10^8 ms⁻¹ and the refractive index of water is 1.33.
 - (3 marks)
- Figure 3 shows part of an electrical circuit. The current through the 18Q resistor is 8 observed to be 2A.

State the value of the current through each of the 10Ω resistors.

(I mark)

In an experiment, a pin, a converging lens and a plane mirror are arranged as shown in 9 Figure 4. The distance between the pin and the plane mirror is L cm while the distance between the lens and the plane mirror is q cm. The position of the pin is adjusted until its tip coincides with its real image.

State the focal length of the lens.

(1 mark)

Figure 5 shows a magnet being moved towards a stationary solenoid. It is observed 10 that a current flows through the circuit in a direction Q to P.

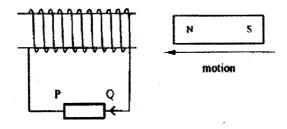
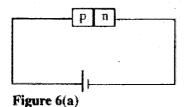
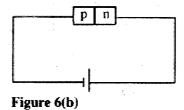


Figure 5

Explain:


how the current is produced; (i)

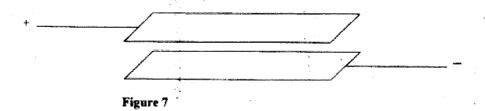

(ii) why the current flows from Q to P.

(1 mark)

- In an X-ray tube it is observed that the intensity of X-rays increases when potential difference across the filament is increased. Explain this observation. (3 marks)
- A boy standing in front of a cliff blows a whistle and hears the echo after 0.5s. He then moves 17 metres farther away from the cliff and blows the whistle again. He now hears the echo after 0.6s. Determine the speed of the sound.

 (3 marks):
- Figure 6(a) and Figure 6(b) show a p-n junction connected to a battery. It is observed that the current in figure 6(a) is greater than the current in Figure 6(b).

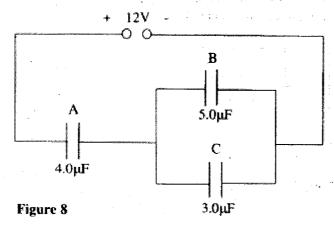
State the reason for this observation.


(1 mark)

SECTION B (55 marks)

Answer all the questions in this section in the spaces provided.

14 (a) Figure 7 shows a pair of parallel plates of a capacitor connected to a battery.


The upper plate is displaced slightly to the left.

State with reason the effect of this movement on the capacitance.

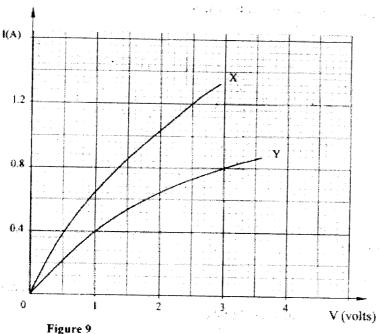
(2 marks)

(b) Figure 8 shows an electrical circuit with three capacitors A, B and C of capacitance 4.0μF, 5.0μF and 3.0μF respectively connected to a 12V battery.

Determine:

(i) the combined capacitance of the three capacitors;

(3 marks)


(ii) the charge on the capacitor A:

(2 marks)

the potential difference across the capacitor B. (iii)

(2 marks)

Figure 9 shows the graph of the relationship between current 1 and potential difference 15 V for two trungsten filament lamps X and Y. The normal working voltages for the lamp X and lamp Y are 2.5V and 3.0V respectively.

- (a) Explain the change in the shape of the curves as the current increases.
- (2 marks)
- Determine the resistance of lamp X at the normal working voltage. (b)

(3 marks)

The lamps are now connected in a series circuit in which a current of 0.4A flows. (c) Find the potential difference across lamp Y. (I mark)

Determine the power at which lamp Y operates under normal working voltage. (d)

(2 marks)

Figure 10 shows a ray of light incident on a triangular glass prism and a white 16 (a) screen S placed after the prism.

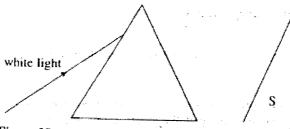


Figure 10

- Complete the path of the ray through the prism to show how a spectrum is (i) formed on the screen. (3 marks)
- (ii) A thermometer with a blackened bulb is placed at various parts of the spectrum. State with reason the region where the thermometer indicates the highest reading. (2 marks)

(b) A pin is placed at the bottom of a beaker of depth 11.5cm. The beaker is then filled with kerosene. By using another pin on the side of the beaker and observing from the top, the distance of the image of the pin in the beaker is found to be 3.5cm from the bottom. Determine the refractive index of kerosene.

(4 marks)

17 (a) Figure 11 shows the path of radiation from a radioactive source. The field is perpendicular to the paper and directed out of the paper.

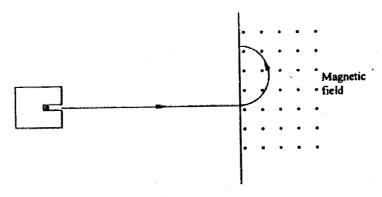


Figure 11

Identify the radiation.

(1 mark)

- (b) Radiation from a radioactive source enters a G.M tube.
 - (i) State the effect of the radiation on the gas inside the tube.

(1 mark)

(ii) Explain how the large discharge current is created.

(2 marks)

(c) The following is a nuclear equation for a fission process resulting from the reaction of a neutron with a Uranium nucleus.

$$\frac{1}{0}n + \frac{235}{92}U \rightarrow \frac{141}{56}A + \frac{y}{x}Q + 3\frac{1}{0}n$$

(i) Determine the values of x and y.

(2 marks)

(ii) State the source of the energy released.

(1 mark)

(iii) Explain how this reaction is made continuous in a nuclear reactor.

(2 marks)

- 18 (a) It is observed that when ultra-violet radiation is directed onto a clean zinc plate connected to the cap of a negatively charged leaf electroscope, the leaf falls.
 - (i) Explain this observation.

(2 marks)

- (ii) State why this observation does not occur if the electroscope is positively charged.
- (iii) Explain why the leaf of the electroscope does not fall when infra-red radiation is directed onto the zinc plate.

(1 mark)

(1 mark)

- (b) State the effect on the electrons emitted by the photoelectric effect when:
 - (i) the intensity of incident radiation is increased;

(1 mark)

(ii) the frequency of the incident radiation is increased.

(1 mark)

(c) The maximum wavelength of light required to cause photoelectric emission on a metal surface is 8.0 x 10⁻⁷m. The metal surface is irradiated with light of frequency 8.5 x 10¹⁴ Hz.

Determine:

(i) the threshold frequency;

(2 marks)

(ii) the work function of the metal in electron volts:

(3 marks,

(iii) the maximum kinetic energy of the electrons.

(2 marks)

Take: $1eV = 1.6 \times 10^{-19} \text{ J.}$ Speed of light = $3.0 \times 10^8 \text{ ms}^{-1}$. Plank's constant, h = $6.63 \times 10^{-34} \text{ Js}$

Figure 12 shows a set up for observing interference of waves from two sources S₁ and S₂. The points C and D represent positions of the constructive and destructive interference respectively as observed on the screen.

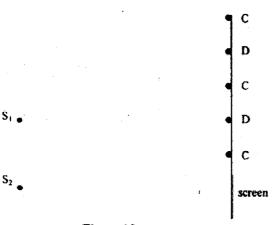


Figure 12

- (a) If the observation was made in a ripple tank, describe:
 - (i) how the two sets of coherent waves were produced;

(2 marks)

(ii) how the constructive and destructive interferences are identified.

(1 mark)

(b) Explain how the constructive interference C and the destructive interference D patterns are produced. (2)

(2 marks)

- (c) Draw:
 - (i) the line joining all points where waves from S₁ and S₂ have travelled equal distance. Label it A.

(1 mark)

(ii) the line joining all points where waves from S_2 have travelled one wavelength further than the waves from S_2 . Label it B.

(1 mark)

29.5.3 Physics Paper 3 (232/3)

- You are provided with the following:
 - two retort stands, two clamps, two bosses
 - a stop-watch
 - a half-metre rule
 - a metre rule
 - some thread
 - some sellotape
 - two 50g masses

Proceed as follows:

(a) Using the two retort stands, set up two simple pendulums each of length 80cm and 46cm apart such that their points of support are in the same horizontal plane.

Ensure that the retort stands are firmly held on the bench. Using the sellotape provided, attach a half-metre rule horizontally on to the strings of the pendulums, such that its upper edge is at a distance D = 20 cm below the points of suspension. Ensure that the pendulums hang freely without louching the bench.

Figure 1 shows the set up.

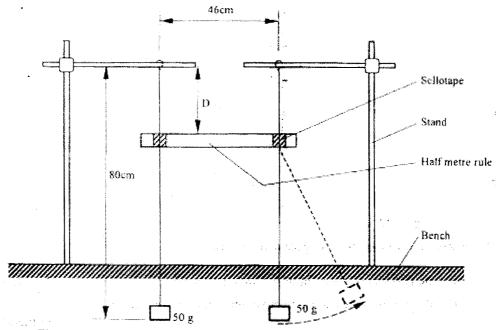


Figure 1

- (b) While holding one of the 50g mass of one pendulum, displace the other 50g mass to one side, (see the dotted position in figure 1) and then release both pendulums simultaneously.
- (c) Observe the motion of the two masses for about 30 seconds and hence:
 - (i) describe the pattern of the oscillation of the two masses; (1 mark)
 - (ii) state a reason for this pattern in terms of mechanical energy. (1 mark)

- (d) Now focus on any one of the two pendulums.
 Measure and record in table 1 the time T taken for the motion to change from one zero-amplitude state to the next zero-amplitude state.
 (Zero-amplitude is when the pendulum is momentarily at rest.)
- (c) Repeat the procedure in (d) for other values of D shown in table 1.

 (Hint: D can be varied by sliding the half-metre rule down wards along the strings of the pendulums without removing the sellotage.) Complete the table.

Do not dismantle the apparatus yet.

Table I

D (cm)	20	25	30	35	40	45	50
						,	
T(s)							
$f = \frac{1}{T}(s^{-1})$						•	

(7 marks)

(f) Plot a graph of f(y axis) against D.

(5 marks)

- (g) Use the graph to determine the frequency f_b , the value of f when D = 38 cm.

 (1 mark)
- (h) Now set the distance D at 38cm, and repeat the procedure in (b) above.

Measure the time interval t between two successive zero-amplitudes for one pendulum and count the number n of the oscillations in the interval.

$$n = \dots$$
 (1 mark)

$$t = \dots$$
 (1 mark)

(i) Determine
$$f_o$$
 given that, $f_o = \frac{n}{f}$ (1 mark)

(j) Determine
$$f_1$$
 given that $f_2 = f_1 - f_0$ (2 marks)

- You are provided with the following:
 - a voltmeter
 - an ammeter
 - · a galvanometer
 - · two dry cells and a cell holder
 - a switch
 - eight connecting wires each with a crocodile clip at one end
 - a resistance wire labelled X
 - a resistance wire labelled AB mounted on a millimeter scale
 - six 10 ohm carbon resistors
 - · a jockey or crocodile clip

Proceed as follows:

(a) Set up the circuit, with the cells in parallel as shown in figure 2.

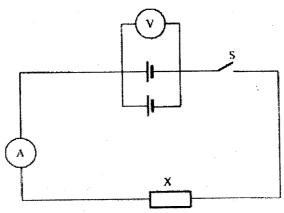


Figure 2

(b)	With the switch open, record the reading E of the volumeter.	
	E =volts.	(1 mark)
(c)	Close the switch. Record the current I flowing in the circuit and the potential difference V across the cells.	i
	1 = A	(1 mark)
	V =volts	(1 mark)
(d)	Given that $E = V + Ir$ and $V = IX$ determine the internal resistance r of the combined cells and the resistance of the wire labelled X .	
	r ==ohms	(1 mark)
	X =ohms	(1 mark)
(e)	Now set up the circuit as shown in figure 3. Z is one of the 10 ohms carbon resistors.	• .

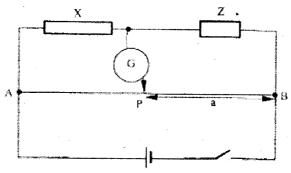


Figure 3

- (f) Close the switch. Tap the jockey at various points on the wire AB and locate a point P at which the galvanometer shows zero deflection. Measure and record in table 2 the length a, where a = PB.
- (g) Repeat the procedure in (f) using two resistors in parallel, three resistors in parallel, four resistors in parallel, five resistors in parallel and six resistors in parallel. Record your readings in table 2. Complete the table. R is the effective resistance for the parallel combination.

Table 2

Number of 10Ω carbon resistors	One	Two	Three	Four	Five	six
a (cm)					TO THE STATE OF TH	
$\frac{1}{R}(\Omega^{-1})$					A Address of the Addr	***************************************
$\frac{1}{a}(cm^{-1})$	Proposed Control of Co				1,004,000	

(6 marks)

- (h) Plot a graph of $\frac{1}{a}$ (y-axis) against $\frac{1}{R}$ (5 marks)
- (i) Determine the slope, m, of the graph. (2 marks)
- (j) Given that $\frac{1}{a} = \frac{X}{kR} + \frac{1}{k}$, where k = 100cm.

Use the graph to determine X.

29.6 CHEMISTRY (233)

29.6.1 Chemistry Paper 1 (233/1)

The ionisation energies for three elements A, B and C are shown in the table below:

Element	A	В	С
Ionisation energy (kJ/mole)	519	418	494

(a) What is meant by ionisation energy?

(1 mark)

(b) Which element is the strongest reducing agent? Give a reason.

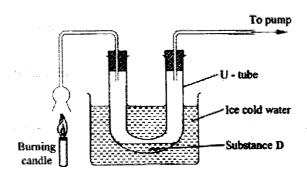
(2 marks)

- 2 Hardness of water may be removed by either boiling or addition of chemicals.
 - (a) Write an equation to show how boiling removes hardness of water.

(1 mark)

(b) Name two chemicals that are used to remove hardness of water.

(2 marks)


3 The atomic number of sulphur is 16.

Write the about on arrangement of sulphur in

Write the electron arrangement of sulphur in the following:

(2 marks)

- (a) H,S;
- (b) SO_3^{-2} .
- 4 An experiment was set up as shown in the diagram below:

(a) Identify substance D.

(I mark)

- (b) Describe how the other product of the burning candle could be prevented from getting into the environment. (2 marks)
- In terms of structure and bonding, explain why the melting point of oxygen is much lower than that of sodium. (3 marks)
- An isotope of element E has 34 neutrons and its mass number is 64. E forms a cation with 28 electrons. Write the formula of the cation indicating the mass and atomic numbers.

(I mark)

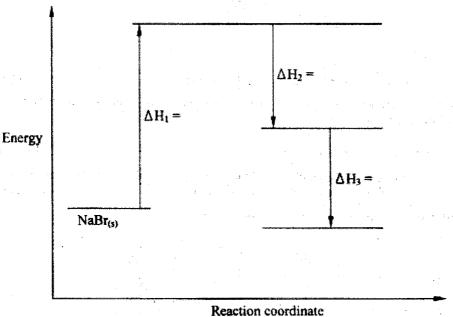
- When aluminium oxide was electrolysed, 1800 kg of aluminium metal were obtained.
 - (a) Write an equation for the formation of aluminium metal.

(1 mark)

(b) Calculate the quantity of electricity in faradays used. (Al = 27).

(2 marks)

- 8 Using dots (.) and crosses (X), show bonding in:
 - (a) the compound formed when nitrogen reacts with flourine (Atomic numbers F = 9, N = 7);


(1 mark)

(b) sodium oxide. (Atomic numbers Na = 11, 0 = 8).

(1 mark)

9 (a) What is meant by molar heat of solution? (1 mark)

- The lattice energy of sodium bromide and hydration energies of sodium and bromide (b) ions are: 733,406 and 335 kJmol⁻¹ respectively.
 - (i) Complete the energy cycle diagram below by inserting the values of ΔH_1 , ΔH_2 and ΔH_3 (11/2 marks)

- Determine the molar heat of solution of solid sodium bromide. (ii)

(½ mark)

- 10 Hydrogen and oxygen can be obtained by electrolysis of acidified water. Using equations for the reactions at the electrodes, explain why the volume of hydrogen obtained is twice that of oxygen. (2 marks)
- Starting with 50 cm³ of 2.8 M sodium hydroxide, describe how a sample of pure sodium 11 sulphate crystals can be prepared. (3 marks)
- 12 The standard reduction potentials of two half-cells are:

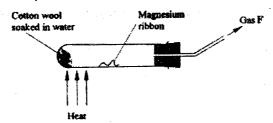
$$Ag_{(aq)}^{+} + e \longrightarrow Ag_{(s)}; E^{\dagger} = 0.80V$$

$$2H_2O_{(1)} + 2e \longrightarrow H_{2(q)} + 2OH_{(aq)}; E^{\dagger} = 0.83V$$

Draw a labelled diagram of an electrochemical cell that can be constructed using the two half-cells.

(3 marks)

When 8.53 g of sodium nitrate were heated in an open test-tube, the mass of oxygen gas produced was 0.83 g. Given the equation of the reaction as

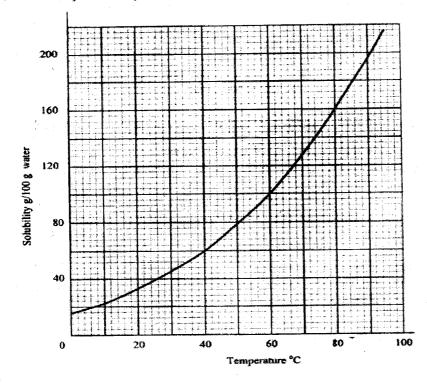

$$2NaNO_{3(s)} \longrightarrow 2NaNO_{2(s)} + O_{2(g)}$$

Calculate the percentage of sodium nitrate that was converted to sodium nitrite (Na = 23.0, N = 14.0, O = 16.0).

(3 marks)

(1 mark)

- Draw and name the structure of the compound formed when one mole of ethyne reacts with one mole of hydrogen bromide. (2 marks)
 - (b) Draw the structures of the alkynes whose molecular formula is C₄H₆.
- A student used the set up shown in the diagram below in order to study the reactions of some metals with steam. The experiment was carried out for ten minutes.

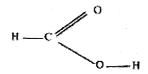

(a) What observation would be made if gas F is ignited?

(I mark)

- (b) When the experiment was repeated using iron powder instead of magnesium ribbon, very little gas F was obtained.
 - (i) Give a reason for this observation.

(1 mark)

- (ii) What change in the conditions of the experiment should the student have made in order to increase the volume of gas F produced? (1 mark
- 16 The solubility curve of potassium nitrate is shown below.


(a) Determine the solubility of potassium nitrate at 50°C.

(1 mark)

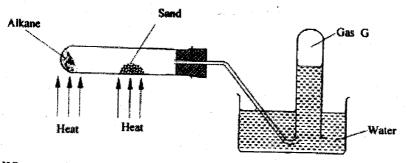
(b) Determine the molar concentration of saturated potassium nitrate at 50° C. (K = 39.0 0 = 16.0 N=14.0 and density of water 1 g/cm³).

(2 marks)

17 The structure of methanoic acid is

What is the total number of electrons used for bonding in a molecule of methanoic acid? Give reasons.

(2 marks)


Bottles of sodium carbonate, sodium chloride and sugar have lost their labels. A student prepares and tests an aqueous solution of a sample from each bottle. The results obtained are as shown in the table below.

Bottle	Ьн	Electrical Conductivity	Correct label
1	7	Conducts	
2	7	Does not conduct	
3	10	Conducts	

Complete the table by filling the correct label for each bottle.

(3 marks)

19 The figure below represents the set up that was used to crack an alkane.

(a) What was the purpose of the sand?

(1 mark)

- (b) After some time, a colourless gas G was collected in the test-tube.

 Describe a chemical test and the observations that would be made in order to identify the class of compounds to which gas G belongs. (2 marks)
- 20 Classify the following processes as either chemical or physical.

(3 marks)

Process	Type of change
(a) Heating copper (II) sulphate crystals	
(b Obtaining kerosene from crude oil	
(c) Souring of milk	

21 Give the name of the product formed when magnesium reacts with phosphorus.

(I mark)


A student added very dilute sulphuric (VI) acid to four substances and recorded the observations shown in the table below.

Test	Substance	Gas given off
İ	Sodium	Yes
2	Iron	No
3	Carbon	Yes
4	Copper	No

For which tests are the observations wrong? Explain

(3 marks)

23 Use the flow chart below to answer the questions that follow.

(a) What observation would be made in step 1?

(1 mark)

(b) Name another substance that could be used in step 2.

(1 mark)

(c) Give the name of substance H.

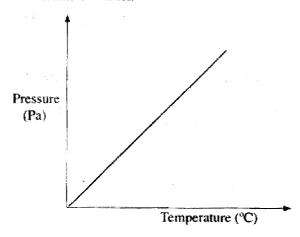
(1 mark)

24 The boiling points of some compounds of hydrogen with some elements in groups 4 and 6 of the periodic table are given below.

Г	Compound	Boiling point (°C)	Compound	Boiling point (°C)
	ĊH,	-164.0	H ₂ O	100.0
l	SiH,	-112.0	H ₂ S	-61.0

- (a) Which of the compounds CH₄ and SiH₄ has the stronger intermolecular forces?

 Give a reason. (1 mark
- (b) Explain why the boiling points of H₂O and H₂S show different trends from that of CH₄ and SiH₄. (2 marks)


- 25 For each of the following reactions, state the observation and write the formula of the compound responsible for the observation:
 - (a) bromine water is added to aqueous potassium iodide;

(1½ marks)

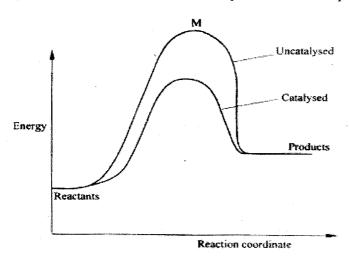
(b) excess aqueous ammonia is added to copper (II) hydroxide (precipitate).

(1½ marks)

26 The graph below shows the relationship between pressure and the temperature of a gas in a fixed volume container.

- (a) State the relationship between pressure and temperature that can be deduced from the graph. (1 mark)
- (b) Using kinetic theory, explain the relationship shown in the graph.

(2 marks)


27 The following reaction is in equilibrium in a closed container.

$$C_{(s)} + H_2O_{(g)} \longrightarrow CO_{(g)} + H_{2_{(g)}}$$

State giving reasons how an increase in pressure would affect the amount of hydrogen.

(2 marks)

28 The energy level diagram below shows the effect of a catalyst on the reaction path.

(a) What does point M represent?

(I mark)

- (b) With reference to the energy level diagram, explain how a catalyst increases the rate of a reaction. (2 marks)
- 29 (a) Draw the structure of compound N formed in the following reaction. (1 mark)

H H O O O
$$nH - N - (CH_2)_6 - N - H + nHO - C - (CH_2)_4 - C - OH - Compound N + 2nH_2O.$$

(b) Give one use of compound N.

(1 mark)

- 30 Starting with red roses, describe how:
 - (a) a solution containing the red pigment may be prepared;

(1 mark)

(b) the solution can be shown to be an indicator.