29.20.1 Electricity Paper 1 (448/1)

SECTION A (52 marks)

Answer all the questions in this section.

- 1 (a) Outline the procedure of rescuing a person in contact with a live conductor in a workshop. (3 marks)
 - (b) State **four** duties of an electrical technician in a large company. (2 marks)
- 2 (a) Outline the procedure of drilling a hole in a metal work piece. (2 marks)
 - (b) Describe the construction of each of the following parts of a lead acid battery:
 - (i) positive plate;
 - (ii) seperator;
 - (iii) casing.

(3 marks)

- 3 (a) List **four** methods of generating electricity for the national grid. (2 marks)
 - (b) Distinguish between self induction and mutual induction. (3 marks)
 - (c) Calculate the total charge in the capacitors shown in figure 1. (3 marks)

Figure 1

4 (a) Define Rc time constant.

(1 mark)

(b) Four resistors are connected as shown in figure 2.

Figure 2

- Calculate:
- (i) the total circuit resistance
- (ii) power dissipated in the 2Ω resistor

(4 marks)

5 (a) Name the two types of ac machines.

(1 mark)

(b) List four parts of a three-phase induction motor.

(2 marks)

- (c) An alternator is operated at a speed of 1500 rpm to generate a voltage of 50 Hz.

 Calculate the number of pair poles. (2 marks)
- 6 (a) A meter movement system is designed to have a full scale deflection of 50 μ A. If it is used as an ohmmeter using 1.5v battery, calculate the value of resistance to give full scale deflection.

(1½ marks)

(b) State **three** advantages of digital measuring instruments over analogue measuring instruments.

(1½ marks)

(c) Describe the **two** methods of identifying faults in electrical equipment.

(4 marks)

7 Draw a sketch of the magnetic flux around two parallel conductor carrying current in the same direction. Indicate the direction of force between the conductors.

(3 marks)

8 (a) State the meaning of the term "final circuit".

(1 mark)

(b) Outline four regulations regarding ring final circuits that supply 13A socker outlets.

(4 marks)

(+ mai

9 (a) Explain the term "Zener voltage".

(2 marks)

- (b) Sketch a schematic circuit diagram of a biased PNP transistor connected in the common-emitter mode. (3 marks)
- 10 Figure 3 shows two orthographic views of a component.

Figure 3

Sketch in good proportion the oblique view of the component.

(4 marks)

SECTION B (48 marks)

Answer any four questions from this section.

- Figure 4 shows the isometric view of a towing hook. Draw, FULL size, in first angle projection:
 - (a) front elevation in the direction of arrow A;
 - (b) end elevation in the direction of arrow B.

(12 marks)

- 12 (a) State two differences in construction between power transistor and general purpose transistor. (2 marks)
 - (b) Explain the meaning of each of the following transistor ratios;
 - (i) dc alpha;
 - (ii) ac beta. (4 marks)
 - (c) Figure 5 shows an amplifier circuit whose current gain is 100.

Figure 5

If VCE is 10v, VBE is 0.7v and IC is 10mA, calculate the value of:

- (i) R_B ;
- (ii) R_{C}^{-} .

(6 marks)

- 13 (a) (i) Differentiate between fusing current and current rating of a fuse.
 - (ii) State two disadvantages of rewirable fuses.

(4 marks)

(b) Draw a labelled diagram of a single-stroke electric bell and explain how it operates.

(8 marks)

14 (a) A sine wave has a period of 100ms. Calculate its frequency.

(1½ marks)

(b) Figure 6 shows a parallel RL circuit.

Figure 6

- (i) Calculate:
 - current I₁ and I₂;
 - total current;
 - power factor;
 - phase angle.
- (ii) Draw the phaser diagram.

(10½ marks)

- 15 (a) Use labelled diagrams to show the construction of each of the following types of transformer:
 - (i) core;
 - (ii) shell.

(6 marks)

(b) A transformer rated 240/12v and 96% efficiency supplies a 10-watt load.

Calculate:

- (i) primary current;
- (ii) power loss in the transformer.

(6 marks)

29.20.2 Electricity Paper 2 (448/2)

EXERCISE 1

Using the materials, equipment and measuring instruments provided, perform the following tasks:

(a) Connect the circuit as shown in figure 1.

Let the examiner check your work.

(1½ marks)

(b) Connect the circuit to the power supply.

(½ marks)

(c) Turn the power on and adjust the potentiometer to obtain each of the voltages (V_R) shown in table 1. In each case read and record the corresponding current I.

V _R (volts)	I (mA)	POWER (mW)
3		
4		
5		
6		
8		

Table 1 (7½ marks)

- (d) For each value of V_R , calculate the power dissipated in the 470 Ω resistor and complete the table. (5 marks)
- (e) Using the values in table 1 draw the graph of power against voltage V_R . (5½ marks)

Using the materials, tools and equipment provided, make the model of a fluorescent lamp rain guard as shown in figure 2.

(20 marks)

(a) Using the given equipment and components, connect the circuit shown in figure 3.

Figure 3

Let the examiner check your work.

(3½ marks)

- (b) Close switch S.
- (d) Adjust the potentiometer to obtain the values given in table 2. In each case, measure and record the corresponding currents.

VOLTAGE (V)	CURRENT (mA)
0.2	
0.5	
0.6	
0.7	
0.8	

(10 marks)

Table 2

(e) Using the values in table 2, plot a graph of current against voltage.

(6½ marks)

- (d) From the given circuit:
 - (i) Identify the devices labelled:

F _____

G

H _____

(ii) Determine the values of the resistors labelled:

R1

R2 _____

R3 _____ (6 marks)

Figure 4 shows a block diagram of the electronic circuit provided.

Figure 4

Carry out the following tasks:

- (a) With the power supply off:
 - (i) Connect the milliameter between Q and S.
 - (ii) Connect the circuit to the power supply.

 Let the examiner check your work.

(2 marks)

- (b) Turn on the power supply and adjust it to obtain the given voltages, E_s in table 3. For each value of Es, measure and record the corresponding values of:
 - (i) voltage across P and T
 - (ii) current through QS.

(10 marks)

E _s	$\mathrm{E}_{ extsf{P-T}}$	I _{Q-S}
2		
5		· · · · · · · · · · · · · · · · · · ·
6		***************************************
8		:
10		

Table 3

(c) From the results obtained, state one practical application of the circuit.

(2 marks)

EXERCISE 5

Figure 5 shows the layout of a power final circuit. Using PVC sheathed wiring system, install the circuit such that the sockets are connected in radial. (20 marks)

