5.3.1 Physics Paper 1 (232/1)

MANYAM FRANCHISE Discover!Learn!Apply

SECTION A

1. 7.6+(0.6x3); 7.6+1.8 9.4ml;

(2 marks)

- 2. Frictional force is equal to the applied force but in the opposite direction, hence the net applied force is zero; (1 mark)
- 3. $m = \frac{w}{g};$ $= \frac{16.5}{1.7};$ = 9.71 kg;

(3 marks)

4. The gas diffuses; from the region of higher concentration to a region of low concentration.

(1 mark)

5. Glass is a poor conductor; unequal expansion leads to cracking;

(2 marks)

- 6. Oil film spreads over a large surface of the sea reducing inflow of air needed by the aquatic life;
 - Reduces the light entering
 - Beaches become dirty;
 - Poisons marine animals when taken in;
 (any two correct)

(2 marks)

7. Stop rising when upthrust is equal to the weight of the balloon and its contents;

(1 mark)

8. Mass of gas must be constant;

(1 mark)

- 9. The height of it's centre of gravity above the surface is constant;
 - Position of its center of gravity does not change.

(1 mark)

- 10. It is within the elastic limit; because
 - the values of $\frac{F}{e}$ = constant in all the cases $\frac{F}{e}$ =5;

OR

- a graph of force against extension is straight line through the origin;

- conclusion from graph;

(2 marks)

11. The body's velocity **decreases uniformly** from 20m/s and becomes zero after 5 seconds; the velocity then starts increasing in the **opposite direction** to a maximum value of 20m/s.

(2 marks)

- 12. Friction between the moving parts of the pulley system;
 - Work done against friction;
 - Work done lifting the moving parts of the pulley system;

(2 marks)

- 13. (i) OA heat gained is breaking intermolecular forces of the molecules/melt the ice without change in temperature;
 - (ii) AB temperature of the water formed starts to rise until it starts to boil; (2 marks)
- 14. (a) Air above the plane moves faster than air below it (because of it's shape) creating a region of low pressure above the place hence plane experiences a lift; due to the pressure difference. (1 mark)
 - (b) At B; because the cross-sectional area is smaller hence the air moves faster in that region; (2 marks)

SECTION B

15. (a) Extrapolation of graph to cut the temperature axis;

PV = a constant;

(II)

absolute zero =
$$278 \pm 2^{\circ}$$
c; (- $272 \pm 2^{\circ}$ c to - $280^{\circ} \pm 2^{\circ}$ c; (2 marks)

- (b) (i) When tube is horizontal pressure of air is equal to atmospheric pressure; i.e. 76cmHg. (1 mark)
 - (ii) (I) When vertical,

 pressure of air = pressure due to mercury column+atmospheric pressure

 = (24+76)cmHg

 = 100cmHg; (1 mark)
 - 76x15=(76+24)l; $1 = \frac{76 \times 15}{100}$ = 11.4cm; (3 marks)
- (c) (i) To expel air; (1 mark)
 - (ii) Pressure of air outside the bottle is greater than the pressure of air inside; (1 mark)
 - (iii) Cooling causes condensation of vapour;
 Creating a partial vacuum; (2 marks)

16. (a) (i)

(straight line not necessarily through the origin but with positive gradient) acceleration; constant acceleration;

(2 marks)

- (ii) Net force on the parachute becomes zero. (Sum of downward forces on it should be equal to sum of upward forces) (1 mark)
- (b) (i) Net force = 2+0.4; = 2.4N;

(2 marks)

(ii) F=ma; 2.4 = 0.2a'; a = -12ms²;

(3 marks)

(iii) $V^2 = u^2 + 2as;$ $s = \frac{0-5^2}{-2 \times 12};$

 $\simeq 1.04$ m;

(3 marks)

- (c) (i) Weight of object;
 - Tension in the string;

(2 marks)

(ii)

The force should be from point A to the center but not beyond

(1 mark)

- 17. (a) Fire heats air around region C which expands and becomes less dense;
 - The less dense air rises up the vent and emerges at A;
 - Cool (more dense) air moves down the vent at B introducing fresh air into the mine (3 marks)
 - (b) The flask has double walls which are silverly on both sides the shiny surface is a good reflector of heat; (1 mark)

(c)

(1 mark)

(d) (i) Heat gained by water = power x time;
=
$$2.5 \times 10^3 \times 4 \times 60$$
;
= $6.0 \times 10^5 \text{J}$; (3 marks)

(ii)
$$E=mc\Delta\theta;$$

$$\Delta\theta = \frac{2.5 \times 10^3 \times 4 \times 60}{2 \times 4.2 \times 10^3};$$

$$= 71.43^{\circ}C;$$
(3 marks)

18. (a) (i) Lengths BC and CD;

(1 mark)

(ii)
$$100 \times BC = S \times CD;$$

$$S = \frac{100BC}{CD};$$
(2 marks)

(b) (i) Volume of
$$10g = \frac{mass}{density}$$
;

$$= \frac{20}{800}$$
;

$$= 2.5 \times 10^{-2} \text{m}^3$$
; (3 marks)

(ii) Upthrust = weight of water displaced

$$= \frac{20}{800} \times 100 \times 10;$$

$$= 2.5 \times 10^{2} \text{N};$$
(2 marks)

(iii) Tension = U-mg;
=
$$250 - 200$$

= $50N$; (2 marks)

19. (a) (i) Valve B rests under its own weight;
- pressure in the cylinder decreases and water rises into the cylinder pushing the valve open; (2 marks)

- (ii) Valve A rests under its own weight and the weight of the water; high pressure is created in the region between valve A and valve B forcing valve B to open; (1 mark)
- (b) The water is lifted up by the piston ad comes out through the spout; (1 mark)

(c)
$$P_{w}gh_{w} = P_{p}gh_{p};$$

$$h_{p} = \frac{1000 \times 10}{800};$$
=12.5m; (3 marks)

- (d) Force applied on piston (during downstroke);
 - Ability of the parts of the pump to withstand the pressure of the liquid column; (2 marks)

5.3.2 Physics Paper 2 (232/2)

1. (a)

(1 mark)

(b) T and R;

(1 mark)

(c)

Reflected ray from T and R moves towards P;

(1 mark)

2.

(3 marks)

3.
$$V + V + \frac{V}{2} = \frac{5V}{2}$$
$$\frac{5V}{2} = 15 \text{ V} \checkmark$$
$$V = 6V$$
$$\therefore \frac{V}{2} = \frac{6}{2} = 3V \checkmark$$

(2 marks)

4.

Check correct direction of field lines.

(2 marks)

5. Refractive index = $\frac{\text{real depth}}{\text{apparent depth}}$

$$= \frac{40}{30} \quad \forall$$

= 1.33 √

(3 marks)

6. β and γ rays;

(1 mark)

7. L - south pole;

(1 mark)

8. UV light ejects electrons by photo electric; emission reducing the negative charges;

(2 marks)

9.

(3 marks)

10. (i)

(ii) Rectilinear propagation.

F; correct direction

(1 mark)

11.

(1 mark)

12. Alternating current can be stepped up, or enhances reduced power losses;

(1 mark)

13.

SECTION B

14. (a) (i) amplitude = $5 \text{ cm}\sqrt{}$

(1 mark)

(ii)
$$T = 20s\sqrt{f}$$
$$f = \frac{1}{T}\sqrt{f}$$

$$f = \frac{1}{20} = 0.05 \text{ H}_2 \sqrt{$$

(4 marks)

(iii)
$$V = \lambda f \sqrt{}$$

$$\lambda = \frac{20}{0.05} \sqrt{}$$

$$=$$
 400 m $\sqrt{}$

(3 marks)

- (b) (i) Waves at Q are in phase $\sqrt{}$ so there is constructive interference. $\sqrt{}$ (2 marks)
 - (ii) Waves are out of phase hence destructive interference. $\sqrt{}$ (1 mark)
 - (iii) Interference pattern would disappear. $\sqrt{}$ (1 mark)
- 15. (a) (i) $V = IR\sqrt{10I}$ $I = 0.15A\sqrt{10I}$ (3 marks)
 - (ii) bulb = $0.1A\sqrt{R \times 0.1 = 1.5\sqrt{R}}$ $R = 15\Omega\sqrt{2}$ (2 marks)
 - (b) (i) the resistance of the bulb would increase;
 - (ii) Current is higher hence increases; temperature increased temperature results in increased resistance; (2 marks)
 - (c) Number of units = $(0.1 \times 10 + 0.06 \times 10 + 0.03 \times 10)$ = 1.9 units;

$$Cost = 1.9 \times 40 \times 7;$$

= Ksh 5.32; (3 marks)

- 16. (a) (i) Pointer deflects upto a certain; maximum value and then returns to zero; (2 marks)
 - (ii) There is a deflection in the opposite direction then back to zero; As Flux in A falls, flux in B also falls and causes induced e.m.f in the opposite directions; (2 marks)
 - (b) (i) Current in the primary is constantly changing its direction; so that the resulting flux (which link coils) is constantly changing its direction. Therefore alternating e.m.f is induced in the secondary coil; (2 marks)

(ii)
$$\frac{V_s}{V_p} = \frac{N_s}{N_p}$$
;

$$\frac{Vs}{240} = \frac{200}{1000}$$
;

$$V_S = 48V;$$
 (3 marks)

(iii) Efficiency =
$$\frac{\text{Power output}}{\text{Power input}} \times 100\%;$$

$$= \frac{\text{IsVs}}{\text{IpVp}} \times 100\%$$

$$= \frac{0.8 \times 48}{0.2 \times 240} \times 100\%;$$

$$= 80\%;$$

(3 marks)

17. (a) (i) The image diminishes (becomes smaller);

(1 mark)

(ii)
$$m = 1 \Longrightarrow \frac{V}{u} = 1;$$

$$V = u = 40 \text{ cm};$$

(2 marks)

(iii)
$$u = 25$$
, $m = 4$

$$m = \frac{v}{u}$$

$$\frac{v}{25} = 4;$$

$$V = 100 \text{ cm};$$

(3 marks)

(b)

(3 marks)

(c) A bulb/lamp placed at principal focus will give a wide parallel beam;

(1 mark)

- 18. (a) (i) To produce electrons; by thermionic emission; (2 marks)
 - (ii) To accelerate the electrons to give them enough K.E. to produce X-rays at the anode;; (2 marks)
 - (iii) To absorb stray X-rays, thus protecting the operator from those rays; (1 mark)
 - (b) Increases K.E. of electrons and hence causes X-rays of higher frequency; (1 mark) OR
 - X ray are more penetrative
 - X rays of shorter wavelength.
 - (c) E = hf;= $6.63 \times 10^{-34} \times 7.5 \times 10^{14}$ = $4.97 \times 10^{-19} J;$

K.E =
$$4.97 \times 10^{-19} \ 4.0 \times 10^{-19}$$
;
= 0.97×10^{-19} J;

(4 marks)

5.3.3 Physics Paper 3 (232/3)

1 (a)
$$f_1 = 20 cm \pm 2 cm$$
 (1)

$$(c) f_2 = 15cm \pm 2cm (1)$$

(f)	d(cm)	65	67	69	71	73	77	80	
	V(cm)	37.5	33.8	31.1	29.1	27.5	25.2	24.0	±2

(6 marks)

(1 mark)

(g) (i) Graph (6 correctly plotted points)

Curve/line on at least 4 correctly plotted points

(ii) I. Value of
$$V = 30 \pm 1$$
 (1 mark)

II. Slope
$$s = \frac{35 - 20}{81.25 - 63.75}$$

$$= -0.86$$

$$\simeq -0.9$$

No curve/line no slope (3 marks)

(iii)
$$K = \frac{-225}{(d-55)^2} = \frac{-225}{225} = -1$$
 (2 marks)

(iv)
$$M = \frac{S}{K} = \frac{-0.9}{-1} = 0.9$$
 (2 marks)

Graph 1

2. (b) (i) Maximum Voltmeter reading = 4.4 Volts

(1 mark)

(ii) Voltmeter reading $V_B = 3.7$ Volts

- (1 mark)
- (iii) In (i) p.d. measured is across both. diode and resistor, while in (ii) p.d. is across diode only.
- (1 mark) (1 marks)

(c) $V_B = 0.8 \text{ Volts.}$

(1 mark)

(d)

V_A/V	V_B / V	$I = \frac{V_A - V_B}{1000} A$
1.5	1.2	0.3 x 10 ⁻³
2.0	1.7	0.3 x 10 ⁻³
2.5	2.1	0.4×10^{-3}
3.0	2.5	0.5×10^{-3}
3.5	2.9	0.6×10^{-3}
4.0	3.4	0.6×10^{-3}

Column I = 1 mark

Values of $V_B = 5 \text{ marks}$

Total for table = 6 marks

(e) Axes labelled

Scale (simple & uniform)

Plotting

Curve (line)

1 mark

1 mark

3 marks

1 mark

(5 marks)

(f) I = 0.45 mA,

$$V_{\rm B} = 2.3 \text{ volts}$$

$$\therefore R = \frac{V_B}{1} = \frac{2.3}{0.45 \times 10^{-3}}$$

$$= 5.1 \times 10^3$$

$$= 5.1 \,\mathrm{k}\Omega$$

(3 marks)

