5.6 ELECTRICITY (448)

5.6.1 Electricity Paper 1 (448/1)

SECTION A

1. (a) Procedure of connecting an ammeter to take measurements in a circuit

- Turn off the power
- Ammeter should be connected in series with the load current.
- Observe polarity.
- Select the range starting from the highest.

 $(4 \times \frac{1}{2} = 2 \text{ marks})$

(b) (i) Nominal resistance

Orange	Black		Brown	
3	0	x	101	$= 300 \Omega$

 \therefore Nominal = 300 Ω

(1 mark)

(ii) Maximum resistance

$$300 + 5\% = 315 \Omega$$

(2 marks)

2. (a) Circuit diagram

- Shows connection of every component.
- Shows values of components.
- Shows the position of the components.
- Shows functionality of the circuit.

 $(any 2 \times 1 = 2 marks)$

- (b) Bills of materials
 - Materials/parts.
 - Quantity.
 - Size.
 - Estimate costs.

 $(4 \times \frac{1}{2} = 2 \text{ marks})$

3. (a) (i) Forward bias reduces $(\frac{1}{2})$ the PN-junction (depletion

reduces $(\frac{1}{2})$ the PN-junction (depletion layer) and hence the diode conducts $(\frac{1}{2})$.

(ii) Reverse bias

increases $(\frac{1}{2})$ the PN-junction (depletion layer) hence the diode does not conduct $(\frac{1}{2})$.

(2 marks)

(b) (i) I_{F(max)}: is the maximum forward current that the diode can pass without burning out.

(1 mark)

(ii) V_{F(typ)}: is the forward voltage across the diode at the typical operating

(1 mark)

 $I_p = \frac{V}{R}$ 4. (a) $\left(\frac{1}{2}\right)$

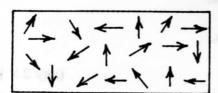
$$=\frac{100 \text{ V}_{\text{rms}}}{1 \text{ k}\Omega} \qquad \qquad (\frac{1}{2})$$

$$= 0.1 \text{ A} \qquad \qquad \left(\frac{1}{2}\right)$$

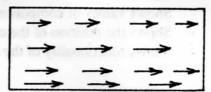
(b)
$$N_1 I_1 = N_2 I_2$$
 (1)

$$1200 \times 0.1 = 400 \times I_2$$
 $(\frac{1}{2})$

$$I_2 = \frac{120}{400} = 0.3 \text{ A}$$
 $(\frac{1}{2})$


$$V_2 = I_2 R_2 \tag{\frac{1}{2}}$$

$$= 0.3 \times 8000 \tag{\frac{1}{2}}$$


$$= 2,400$$
 $(\frac{1}{2})$

(5 marks)

5. (a)

(b)

Drawing =
$$(\frac{1}{2})$$

Labelling = $(\frac{1}{2})$
Direction = $(\frac{1}{2})$
= $1(\frac{1}{2})$ marks

Drawing =
$$(\frac{1}{2})$$

Labelling = $(\frac{1}{2})$
Direction = $(\frac{1}{2})$
= $1(\frac{1}{2})$ marks

(i) $E = 5 + (I \times R_1)$ 6. (a)

$$= 5 + (2 \times 10^{-3} \times 2000) \qquad (\frac{1}{2})$$

Here each
$$(-1)$$
 the PN-)stance (depletion by (-1) and (-1)

$$= 9 \text{ V} \qquad \qquad \left(\frac{1}{2}\right)$$

(1)

(ii)
$$R_2 = \frac{V_2}{I} (\frac{1}{2}) = \frac{4V}{2mA} (\frac{1}{2}) = 2 k\Omega (\frac{1}{2})$$

(iii)
$$R_3 = \frac{V_3}{I} = \frac{1V}{2mA} = 0.5 \text{ k}$$

(4 marks)

(b) (i) Energy consumed

Lights
$$5 \times 60 \times 4 = 1.2 \text{ kwh}$$
 $(\frac{1}{2})$

Kettle
$$1 \times 2 \times 0.5 = 1.0$$
 kwh $(\frac{1}{2})$

Total energy =
$$2.2 \text{ kwh}$$
 (1)

(ii) Cost of energy

$$= 2.2 \times 80 = 1.76 \text{ sh}$$
 (1)

(3 marks)

7. (a) Safety precautions to be observed

- Ensure that the equipment is properly earthed.
- Do not use it in damp areas.
- Always remove the plug from the socket when the equipment is not in use.
- When using extensions, ensure the joints are firm and insulated using the electricians insulation tape.
- Hold it firmly.
- Avoid loose clothing like ties.

(any $3 \times 1 = 3$ marks)

(b) Communication service providers in Kenya

- Telkom Kenya
- Safaricom
- Airtel
- Yu

 $(4 \times \frac{1}{2} = 2 \text{ marks})$ or any other existing ones

8. (a) Insulating materials used in electrical circuits

- PVC
- Porcelain
- Magnesium oxide
- Paper
- Rubber
- ' Air
- Formica

 $(4 \times \frac{1}{2} = 2 \text{ marks})$

(b) Advantages of PVC

- Easy of erection.
- It is cheap.
- It is resistant to corrosion.
- It is light.
- There is no risk to earth leaks.

 $(any 3 \times 1 = 3 marks)$

9. (a) Inductance required

$$L = \frac{1}{4\pi^{2}f^{2}C}$$

$$= \frac{1}{4\pi^{2}(1.5 \times 10^{5})^{2}(10^{-12})}$$

$$= 1.13 \times 10^{-3}H$$

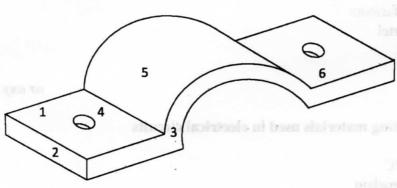
$$= 1.13 H$$

$$(\frac{1}{2})$$

$$(\frac{1}{2})$$

(2 marks)

(b) (i) Apparent power


= IV
$$(\frac{1}{2})$$

= 2.5 × 240 $(\frac{1}{2})$
= 600 VA $(\frac{1}{2})$

(ii) True power

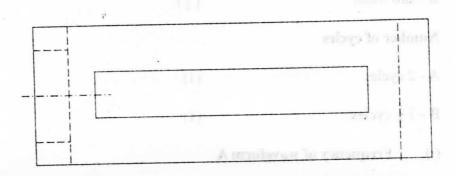
= apparent power × power factor
$$(\frac{1}{2})$$

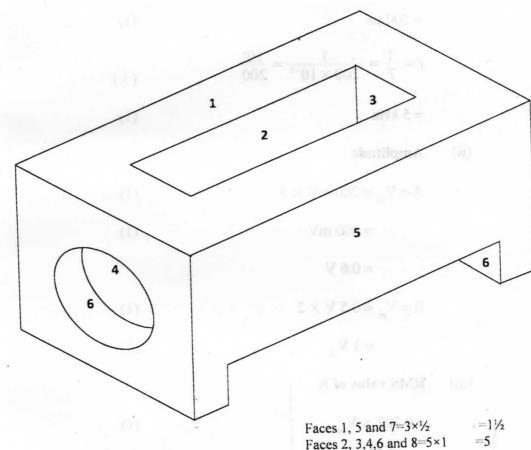
= 600×0.6 $(\frac{1}{2})$
= 360 w $(\frac{1}{2})$

(3 marks)

10.

Faces = $4 \times \frac{1}{2} = 2$ Holes = $2 \times \frac{1}{2} = 1$ Projection = 1Neatness = $\frac{1}{2}$ Proportionality = $\frac{1}{2}$


(5 marks)


SECTION B

11.

11.

Complete Plan $Faces=2\times\frac{1}{2} = 1$ Hidden details= $2\times1=2$ TOTAL = 3

Faces 1, 5 and $7=3\times\frac{1}{2}$ Faces 2, 3,4,6 and $8=5\times1$ Projection
Placement of **X**Neatness

TOTAL $=1\frac{1}{2}$ =5 $=\frac{1}{2}$

12. (a) Name of waveforms

A - sine wave

 $\left(\frac{1}{2}\right)$

B - saw tooth

 $\left(\frac{1}{2}\right)$

(b) Number of cycles

A - 2 cycles

(1)

B - $3\frac{1}{4}$ cycles

(1)

(c) (i) Frequency of waveform A

$$=\frac{1}{T}$$
 where T = period

 $(\frac{1}{2})$

$$T = 50\mu \times 4$$

(1)

$$= 200 \mu s$$

(1)

$$f = \frac{1}{T} = \frac{1}{200 \times 10^{-6}} = \frac{10^6}{200}$$

 $\left(\frac{1}{2}\right)$

$$= 5 \text{ kHz}$$

(1)

(ii) Amplitude

$$A = V_{pk} = 200 \text{ mV} \times 3$$

(1)

$$= 600 \text{ mV}$$

(1)

$$= 0.6 V$$

$$B = V_{pk} = 0.5 \text{ V} \times 2$$

(1)

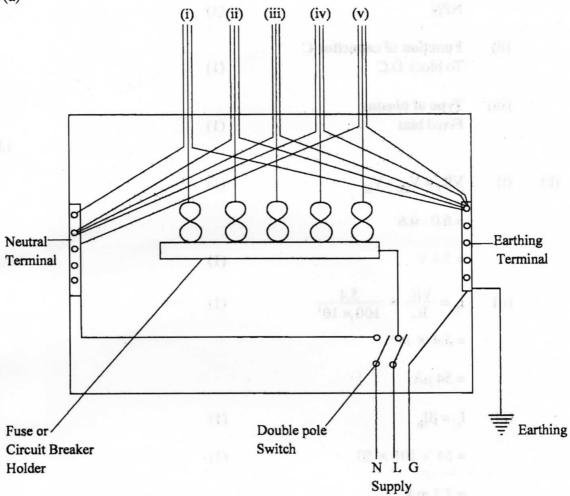
$$= 1 V_{pk}$$

(1)

(iii) RMS value of A

$$= 0.707 \times V_{pk}$$

(1)


$$=0.707\times0.6$$

$$= 0.424 \text{ V}$$

(1)

(13 marks)

Correct Drawing = 8 Labelling 6 items = 3

(11 marks)

(any $4 \times \frac{1}{2} = 2$ marks) (Total = 11 + 2 = 13 marks)

14. (a) (i) Type of transistor

NPN

(1)

(ii) Function of capacitor C

To block D.C

(1)

(iii) Type of biasing

Fixed bias

(1)

(3 marks)

(b) (i) $VR_1 = V_{CC} - V_{be}$

(1)

= 6.0 - 0.6

= 5.4 V

(1)

(ii) $I_B = \frac{VR_1}{R_1} = \frac{5.4}{100 \times 10^3}$

(1)

 $= 5.4 \times 10^{5}$

 $= 54 \mu A$

(iii) $I_C = \beta I_B$

(1)

 $=54\times10^{-6}\times50$

(1)

= 2.7 mA

(iv) Voltage V_{CE}

 $VR_2 = I_C \times R_2$

(1)

 $= 2.7 \text{ mA} \times 1 \times 10^3$

= 2.7 V

(1)

 $V_{CE} = V_{CC} - VR_2$

(1)

= 6 - 2.7 V

= 3.3 V

(1)

(10 marks)

15. (a) (i)
$$X_L = 2\pi f L$$

$$=2\pi\times50\times0.05$$
 (\frac{1}{2})

$$= 15.70 \ \Omega \tag{\frac{1}{2}}$$

$$X_c = \frac{1}{2\pi fc} \tag{1}$$

$$=\frac{1}{2\pi\times50\times2\times10^{-6}}\tag{\frac{1}{2}}$$

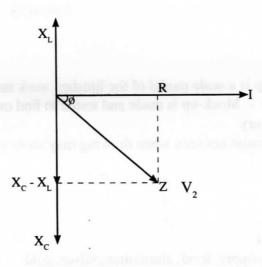
$$= 1592 \Omega \qquad \qquad (\frac{1}{2})$$

$$Z = \sqrt{R^2 + (X_C - X_L)^2}$$
 (1)

$$= \sqrt{1000^2 + (1592 - 15.7)^2} \tag{1}$$

$$= 1866 \ \Omega \tag{1}$$

(7 marks)


(ii) Current =
$$\frac{V}{Z}$$
 (1)

$$=\frac{240}{1866}$$
 (1)

= 0.12 A
$$(\frac{1}{2})$$
 Amps $(\frac{1}{2})$ (1)

(3 marks)

(b)

Axes = 1
Labelling =
$$4 \times \frac{1}{2} = 2$$

(3 marks)