4.6 ELECTRICITY (448)

4.6.1 Electricity Paper 1 (448/1)

SECTION A (48 marks)

Answer all the questions in this section in the spaces provided.

- 1 (a) Outline the procedure of connecting an ammeter to take a measurement in a circuit.

 (2 marks)
 - (b) Figure 1 shows a resistor with colour bands.

Figure 1

Determine its:

- (i) nominal resistance; (1 mark)
- (ii) maximum resistance. (2 marks)
- 2 (a) State **two** reasons for using a circuit diagram when troubleshooting an electrical equipment. (2 marks)
 - (b) State four components of a bill of materials in project fabrication. (2 marks)
- 3 (a) Explain the effect of each of the following in a p-n junction: (2 marks)
 - (i) forward bias;
 - (ii) reverse bias.
 - (b) State the meaning of each of the following ratings of a light emitting diode:
 - (i) $I_{F(max)}$;

(ii) $V_{F(typ)}$.

(2 marks)

4 Figure 2 shows a transformer whose primary impedance is 1 kΩ.

Figure 2

Determine the:

- (a) primary current I_p;
- (b) voltage across R_L .
- 5 With the aid of labelled diagrams, illustrate the arrangement of magnetic domains in:
 - (a) unmagnetised material;
 - (b) magnetised material.

(3 marks)

6 (a) Figure 3 shows a voltage divider circuit.

Figure 3

Determine the value of;

(i) E;

	(ii)	R ₂ ;					
	(iii)	R ₃ .	(4 marks)				
	(111)	N ₃ .	(4 marks)				
	(b)	A consumer has the following loads connected to the supply:					
		 (i) five 60 W lights for 4 hours; (ii) one 2 kW kettle for ½ hour. 					
		Calculate the total:					
		(i) energy consumed;					
		(ii) cost of energy used if the rate is 80 cents per unit.					
		(ii) cost of chergy used if the face is so come per unit.	(3 marks)				
7	(a)	State three safety precautions to be observed by an operator using a portable	electric				
		drill.	(3 marks)				
	(b)	Name four communication service provider companies currently operating i					
	(b)	Kenya.	(2 marks)				
8	(a)	Name four types of insulating materials used in electrical circuits.	(2 marks)				
	(b)	State three advantages of PVC conduit wiring systems.	(3 marks)				
9	(a) Calculate the inductance required to cause resonance at 150 kHz when the capacitance is 1.0 pF.						
	(b)	In a 240V circuit, the load current is 2.5 A. If the power factor is 0.6, calcula	ate:				
		(i) apparent power;					
		(ii) true power.	(3 marks)				
10	Make	e a free hand isometric drawing of a conduit saddle.	(5 marks)				
		SECTION B (52 marks)					
		Answer any four questions from this section in the spaces provided.					
11	Figu	re 4 in the next page, shows the front elevation, and elevation and an incomple	ete plan of				
**	Figure 4, in the next page, shows the front elevation, end elevation and an incomplete plan of an object.						
	(a)	Complete the plan;					
	(b) On the isometric grid provided, draw the isometric projection of the object n the lowest point.						
			(13 marks)				

On the isometric grid provided, draw the isometric projection of the object making the lowest point.

12 Figure 5 shows waveforms A and B. Their vertical and horizontal scales are given.

- (a) Name each of the **two** waveforms. (1 mark)
- (b) State the number of cycles displayed in each waveform. (2 marks)
- (c) Calculate:
 - (i) frequency of waveform A;
 - (ii) amplitude of each waveform;
 - (iii) RMS voltage of waveform A.

(10 marks)

- 13 (a) Draw a labelled diagram of a consumer unit with the following final circuits.
 - (i) lighting circuit;
 - (ii) water heater circuit;
 - (iii) bell circuit;
 - (iv) cooker circuit;
 - (v) ring circuit.

(11 marks)

(b) State the typical fuse ratings for any four of the final circuits in (a).

(2 marks)

14 Figure 6 shows an amplifier circuit whose current gain is 50.

- (a) (i) Name the type of transistor;
 - (ii) State the function of the capacitor C.
 - (iii) Name the type of biasing.

(3 marks)

(b) Calculate the values of:

(10 marks)

- (i) voltage across R;
- (ii) base current I_p;

- (iii) collector current I_C;
- (iv) voltage V_{CE}.

15 Figure 7 shows an R-L-C circuit.

(a) Calculate the:

(7T marks)

(i) impedence of the circuit;

(7 marks)

1.6.2 Electricity Paper 2 (448/2)

(ii) current.

(3 marks)

(b) Draw the phasor diagram.

(3 marks)

Adjust the potentiometer for the ammeter to obtain current values in table 1 and in each

(v) Calculate the values of \(\frac{V}{V}\) and record them in the spaces provided in the table.

(v) Use the values in the table to draw a graph of voltage against current.

(vi) Determine the slope of the graph.

vii) From the graph, determine the voltage, V when the current I = 160 mA.

viii) State the purpose of the experiment. (1 mark)

4.6.2 Electricity Paper 2 (448/2)

EXERCISE 1

- 1 Using materials, components and equipment provided, perform the following tasks.
 - (i) Connect the circuit shown in figure 1.

 Let the examiner check your work.

 (3 marks)

Figure 1

- (ii) Close switch S.
- (iii) Adjust the potentiometer for the ammeter to obtain current values in table 1 and in each case record the corresponding voltage values. $(7\frac{1}{2} \text{ marks})$

- (iv) Calculate the values of $\frac{V}{I}$ and record them in the spaces provided in the table.
- (v) Use the values in the table to draw a graph of voltage against current. $(5^{\frac{1}{2}} \text{ marks})$
- (vi) Determine the slope of the graph. (2 marks)
- (vii) From the graph, determine the voltage, V when the current I = 160 mA.

(1 mark)
(viii) State the purpose of the experiment. (1 mark)

EXERCISE 2

2 Use the tools, equipment and materials provided to make the bracket shown in figure 2. (20 marks)

Figure 2

EXERCISE 3

3 Figure 3 shows a block diagram of the electronic circuit provided.

Perform the following tasks:

- (a) With the switch S open, connect the circuit to the DC power source. Let the examiner check your work. (1 mark)
- (b) Set the potentiometer to 0Ω as measured with ohmeter. Select a value of resistor shown in table 2 and in each case, do the following:
 - (i) connect each resistor between terminals A and B; $(2^{\frac{1}{2}} \text{ marks})$
 - (ii) close the switch, measure the voltage and record in table 2. (5 marks)

Table 2

Resistor (Ω) V_R $P = \frac{V_R^2}{R}$ 56

220

390

(iii) Calculate the power dissipated by each resistor and complete table 2.

(5 marks)

 $(5^{\frac{1}{2}} \text{ marks})$

- (iv) Draw a graph of power against resistance.
- (v) From the graph, determine the value of R for which there is maximum power transfer. (1 mark)

EXERCISE 4

680 1000

4 Use the components and equipment to connect the circuit illustrated in **figure 4**. Let the examiner see your work. $(2^{\frac{1}{2}} \text{ marks})$

Figure 4

Perform the following tasks:

- a) Switch on the power supply.
- b) Adjust the power supply to obtain each of the voltage values across U as shown in table 3 and in each case, record the corresponding current: (5 marks)

 Table 3

 V
 0.4
 0.5
 0.6
 0.7
 0.8

 I
 0.5
 0.6
 0.7
 0.8

- c) Switch off the power supply and reverse its connections.
- d) Adjust the power supply to obtain each of the voltage values across U as shown in table 4 and in each case, record the corresponding current. (5 marks)

	nels a confirma	eval bridge age.	Table 4		T feet solve reserve
V	-0.5	-1	-3	-4	-5
I	the design pi	s parysose in	and state t	ur-slaoin" /m	Define the a

- e) Use the values of I and V from tables 3 and 4 to draw the graph of current (I) against voltage (V) on the same axes. (7 marks)
- f) From the shape of the graph, identify component U. $(\frac{1}{2} \text{ marks})$

EXERCISE 5

5 Figure 5 shows the layout of a lighting installation. Using PVC sheathed cables, install the circuit such that the lamps are controlled at one point.

(20 marks)

