4.5 PHYSICS (232)

4.5.1 Physics Paper 1 (232/1)

SECTION A

1.

$$
\begin{aligned}
& L=\frac{18.6+18.5+18.6+18.5}{4} \\
& L=\frac{74.2}{4}=18.55
\end{aligned}
$$

students should record 18.6 cm
$\sqrt{ }(1)$
2. 3.46 mm read from photograph.
3. \quad Weight $=$ Mass x gravity

OR (kilograms is the unit of measuring the mass and does not depict the force of gravity)
4.
(a) $\mathrm{BC}=$ Constant $\sqrt{ }(1)$
(b) $\mathrm{CD} \quad-\quad$ decreasing
$\sqrt{ }(1)$
5.

$$
\begin{array}{ll}
\frac{F}{A}=p & \\
\mathrm{~F} & =5 \times 24 \\
\mathrm{~F} & =120 \mathrm{~N}
\end{array}
$$

6. Volume of drop $=$ Volume of patch $\sqrt{ }(1)$
$\operatorname{Ad} \quad=\quad \mathrm{V} \quad \sqrt{ }(1)$
$\mathrm{d} \quad=\quad \frac{\mathrm{V}}{\mathrm{A}}$
7. Flask painted black absorbs more heat;
causing more expansion of air above S than above T; $\sqrt{ }(1)$
hence S is pushed downwards and T upwards; $\quad \sqrt{ }(1)$
8.

$$
\begin{align*}
50 \mathrm{x} & =20 \times 1 \tag{}\\
\mathrm{x} & =\underline{20} \\
& =50 \\
& =0.4 \mathrm{~m} \tag{}
\end{align*}
$$

9.

$$
\begin{array}{lcc}
\text {-raised } \mathrm{K} \text { to } \mathrm{K}^{\prime} & \checkmark & (1) \tag{1}\\
-\mathrm{P} \text { also raised to } \mathrm{P}^{\prime} & \checkmark & (1)
\end{array}
$$

10. Extension $=4 \mathrm{~mm}+4 \mathrm{~mm}$
$=8 \mathrm{~mm}$
11. $A_{1} V_{1}=A_{2} V_{2}$
$\frac{V_{2}}{V_{1}}=\frac{A_{1}}{A_{2}}$
$\sqrt{ }(1)$
12.

13.
(a) BC
Solid changes to liquid
$\sqrt{ }(1)$
(b) DE

Liquid changes to vapour
$\sqrt{ }(1)$
14. - Collisions / bombardment of particles with air molecules which are in random motion.

SECTION B

15.

(a)

$$
\text { (i) } \quad \begin{aligned}
\text { Displacement } & =\quad \text { Area under graph } \\
& =20 \times 8 \mathrm{~m} \\
& =160 \mathrm{~m}
\end{aligned}
$$

(ii) After point B,

$$
\begin{aligned}
a & =\frac{0-20}{4} \mathrm{~ms}^{-2} \\
& =-5 \mathrm{~ms}^{-2}
\end{aligned}
$$

(iii) $\mathrm{F}=\mathrm{ma}=2 \times-5 \mathrm{~N}$
$=-10 \mathrm{~N}$
(b)

16. (a) (i) Force $=4 \mathrm{~N}$
(ii) Since velocity is constant. (uniform speed)

Resultant force is zero $=$ Force downwards is equal to force upwards

$$
=\quad 4 \mathrm{~N} \quad \sqrt{ }(1)
$$

(b) (i) M.A $=\frac{\text { load }}{\text { Effort }}=\frac{20}{4}$

$$
\sqrt{ }(1)
$$

$$
\sqrt{ }(1)
$$

$$
\sqrt{ }(1)
$$

(ii) V.R $=\frac{\text { Effort dis } \tan c e}{\text { Load dis } \tan c e}$;
$=\frac{40}{5} ;$

$$
=\quad 8 \text {; }
$$

(iii) Efficiency $=\frac{M . A}{V . R} \times 100 \%$

$$
\sqrt{ }(1)
$$

$$
=\quad \frac{5}{8} \times 100
$$

$$
\sqrt{ }(1)
$$

$=62.5 \%$
17. (a) $l_{1}=142, \quad T_{1}=290 \mathrm{~K}, \quad T_{2}=298 \mathrm{~K}, l_{2}=$?

$$
\begin{array}{ll}
& \frac{l_{1}}{T_{1}}=\frac{l_{2}}{T_{2}} \text { or } \frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \\
l_{2}=142 \times \frac{298}{290} \\
=\quad 145.9 \mathrm{~mm} & \sqrt{ }(1) \\
\text { (b) } \quad \begin{array}{l}
\text { In the hot sun the temperature of the } \\
\text { air increases; therefore the speed of the air } \\
\text { molecules increases hence the rate of } \\
\text { collisions between the molecules and }
\end{array} \\
\begin{array}{l}
\text { tyre increases; The rate of change of momentum } \\
\text { of the molecules also increases. }
\end{array} & \sqrt{ }(1) \\
\text { (pressure) }
\end{array}
$$

$$
\sqrt{ }(1)
$$

(c)

(i)	Heat lost				$=$	Heat gained						
	$\mathrm{mLv}+\mathrm{M} \Delta \theta \mathrm{C}_{\text {steam }}$				$=$	$\mathrm{M} \Delta \theta \mathrm{C}_{\text {water }}$					$\sqrt{ }(1)$	
	0.01 Lv +	1×30	$\times 4200$		$=$	0.1	\times	4200	\times	50		$\sqrt{ }(1)$
	0.01 Lv	$=$	21000 -	1260					$\sqrt{ }$			
	Lv	=	$\frac{19740}{0.01}$									
		$=$	$1.974 \times$	10^{6}	J K							

(ii) - All the heat lost by the steam is not absorbed by the water alone.

- Reading the thermometer at wrong meniscus resulting in wrong temperatures.

18. (a) Friction between road and tyre.
(b) Increases the centripetal force acting on the bus.
(c)
(i) - Weight

- Tension
(ii) (I) $\mathrm{f}=2$ revolutions / sec

$$
\begin{array}{rlr}
\mathrm{T} & =\frac{2 \pi}{\omega}=\frac{1}{f} \quad \sqrt{ }(1) \\
\mathrm{f} & =\frac{\omega}{2 \pi}=2 & \sqrt{ }(1) \\
\omega & =2 \times 2 \pi \\
& =4 \pi \mathrm{rad} \mathrm{~S}^{-1}=12.56 \\
& \simeq 13 \mathrm{rad} \mathrm{~S}^{-1} & \\
\text { (II) } \quad \mathrm{T} & +\mathrm{mg}=\mathrm{mr}^{2} \omega^{2} \\
\mathrm{~T} & =\mathrm{mr} \omega^{2}-\mathrm{mg} \\
& =0.2 \times 0.4\left(16 \pi^{2}\right)-0.2 \times 10 & \sqrt{ }(1) \\
& =10.63 \\
& =10.6 \mathrm{~N}
\end{array}
$$

19.

(a)	(i)	(I)	Volume of water dis	laced	$=$	2×5			$\sqrt{ }(1)$	
					$=$	$10 \mathrm{~cm}^{3}$			$\sqrt{ }(1)$	
		(II)	Mass $=$ Volume	density			$\sqrt{ }(1)$			
			$=10 \times 1$							
			$=0.01 \mathrm{~kg}$				$\sqrt{ }(1)$			
			\therefore weight $=0.01 \times$				$\sqrt{ }(1)$			
			$=0.1 \mathrm{~N}$				$\sqrt{ }(1)$			
	(ii)	Com	bined weight =	upthrus						
			$=$	0.1 N					$\sqrt{ }(1)$	
	(iii)	Weig	ht of liquid displaced	$=$	0.1 N					
		Mas	of liquid displaced	$=$	0.01 kg		=	10 g	$\sqrt{ }(1)$	
		Volu	me of liquid displaced	$=$	$\frac{\text { mass }}{\text { density }}$		$=$	$\frac{10}{0.8}$		
							=	$12.5 \mathrm{~cm}^{3}$		$\sqrt{ }(1)$
		\therefore L	ength submerged	$=$	$2 l$	$=$	12.5			
		(C.S	A $\times l=$ volume)							
			$0.8 l=10$				$\sqrt{ }(1)$			
			$l=\frac{10}{0.8}$							
			$=6.25 \mathrm{~cm}$				$\sqrt{ }(1)$			
(b)	Use	narro	er test tube.				$\sqrt{ }(1)$			

(b) Use a narrower test tube. $\sqrt{ }(1)$

4.5.2 Physics Paper 2 (232/2)

1. (a)

(b) Focal length $=10 \mathrm{~cm}$.
$\sqrt{ } 1$
2. The capacitance increases.
3.

Approximately equally spaced lines $\sqrt{ } 1$

MANYAM FRANCHISE
4.
(a) $\quad V=f \lambda \sqrt{ }$
$\lambda=\frac{3.0 \times 10^{8}}{4 \times 10^{6}} \sqrt{ }$
$75 \mathrm{~m} \sqrt{ }$
5.

$\checkmark \quad$-correct winding
(1)
6. (a) Electrons arbsorb enough energy and are ejected $\sqrt{ }$ leaving the electroscope positively charged $\sqrt{ }$ the leaf is repelled by the stem. $\sqrt{ }$
7.

Correct polarity on each magnet
8.

1 mark for correct bias
1 mark for both ammeter and voltmeter
1 mark for means of varying the p.d. across the diode.
9.

$$
{ }_{88}^{226} \mathrm{Ra} \longrightarrow{ }_{2}^{4} \mathrm{He}+{ }_{y}^{x} Q
$$

(a) $4+x=226$ $x=222 \sqrt{ }$
(b) $2+y=88$
$y=86 \sqrt{ }$
10. - estimate the quantity of charge $\sqrt{ } 1$

- test for insulating properties $\sqrt{ } 1$
- test for the sign of charge $\sqrt{ } 1$
- \quad test for presence of charge $\sqrt{ } 1$

11. It stops the fast moving electrons $\sqrt{ }$ whose kinetic energy is converted to heat.
12.

1 mark for ray incident on hypotenuse
1 mark for showing two internal reflections
13. $Q=1 t \quad 1$ mark for either formula
$n=\frac{Q}{e}$
$=\frac{2.0 \times 10^{-4} \times 1}{1.6 \times 10^{-19}} \quad 1$ mark for substitution
$=1.25 \times 10^{15}$ electrons $\quad 1$ mark for answer

SECTION B

14. (a) (i) I D - soft iron armature $\sqrt{ } \quad 1$
$\begin{array}{llllll}\text { II } & \text { E } & \text { contacts } & \sqrt{ } & 1\end{array}$
(ii) I. Soft iron core is magnetised $\sqrt{ }$ and 1 attracts the armature $\sqrt{ }$ the hammer hits $\quad 1$ the gong.
II. Contact is broken $\sqrt{ }$ when armature is 1 attracted by the core. The core then loses magnetism. $\sqrt{ } 1$ The armature loses magnetism and $\sqrt{ }$ springs back making contact again and the process is repeated.
(b) (i) $\quad I=\frac{P}{V} \sqrt{ }$
$=\frac{60}{240} \sqrt{ }$ 1
$=0.25 A \sqrt{ } \quad 1$
(ii) $R=\frac{V}{I} \quad \sqrt{ } \quad 1$
$R=\frac{240 \times 240}{60} \quad \sqrt{ }$ OR $\frac{240}{0.25} \quad 1$
$R=960 \Omega \quad \sqrt{ } \quad 1$
15. (a) (i) resistance in the coils. $\sqrt{ } 1$
(ii) use of thicker copper wires. $\sqrt{ }$
(b) (i) $\quad \frac{N_{p}}{N_{s}}=\frac{V_{p}}{V_{s}}$

$$
\begin{array}{ll}
=\frac{240}{12} \\
=\frac{20}{1} & \sqrt{ } \\
\end{array}
$$

(ii) Power input $=V_{p} I_{p} \quad \sqrt{ } \quad 1$

$$
\begin{aligned}
& =240 \times 0.36 \\
& =86.4 \mathrm{~W}
\end{aligned}
$$

(iii) Power output $=80 \mathrm{~W}$
(iv) Efficiency $\frac{\text { power output }}{\text { power input }}$

$$
\begin{aligned}
& =\frac{80}{86.4} \\
& =92.59 \%
\end{aligned}
$$

16.

(a) \quad (i) \quad (I) $\quad I_{1}=\frac{V}{R_{1}}$
(II) $\quad I_{2}=\frac{V}{R_{2}}$
$\sqrt{ }$
1
(III) $\quad I_{T}=I_{1}+I_{2}$

$$
\begin{equation*}
I_{T}=\frac{V}{R_{1}}+\frac{V}{R_{2}} \tag{1}
\end{equation*}
$$

(iii) $\quad I_{T}=\frac{V}{R_{T}}$
$\sqrt{ }$

$$
\begin{equation*}
\frac{V}{R_{T}}=\frac{V}{R_{1}}+\frac{V}{R_{2}} \tag{1}
\end{equation*}
$$

$$
\sqrt{ }
$$

divide through by V

$$
\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}, \text { hence } R_{T}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

(b) (i)

(ii) (I) The conductor loses the negative charges to earth. $\sqrt{ } 1$
(II) The conductor acquires a net $\sqrt{ }$ positive charge/which redistributes itself.
(iii)

\checkmark +ve charges uniformly distributed
17. (a) (i) (I) sound is soft when the waves arrive out of phase; $\sqrt{ }$
(ii) same sound - loud.

Along PQ the waves undergo
constructive intereference as they arrive in phase. $\sqrt{ }$
(b) (i)

\checkmark-any correct d
(ii)

(iii) As the longitudinal waves pass $\sqrt{ }$ molecule R moves along to either side. 1 For a crest, R moves away from source.
18.

(II) magnification $=\frac{\text { Image dis } \tan c e}{\text { Object dis } \tan c e} \quad \sqrt{ } \quad 1$

$$
=\frac{20}{10} \quad \sqrt{ } \quad 1
$$

$$
=2 \pm 0.2 \quad \sqrt{ } \quad 1
$$

(iii) Infinity.
$\sqrt{ } 1$

- Outer pair of rays $\sqrt{ }$
- Inner pair of rays $\sqrt{ }$
- proper labelling of umbra and penumbra $\sqrt{ }$

4.5.3 Physics Paper 3 (232/3)

QUESTION ONE PART A

(a) (i) $\mathrm{D}=0.38 \mathrm{~mm} \pm 0.02$
(ii) $\mathrm{d}=0.28 \mathrm{~mm} \pm 0.05$
(b) $\quad C_{1}=\frac{D}{d}=\frac{0.38}{0.28}=1.357$
(c) $l_{1}=38.5 \mathrm{~cm}$
$l_{2}=61.5 \mathrm{~cm}$
$\left(l_{1}<l_{2}\right)$
$\frac{R_{p}}{9}=\frac{38.5}{61.5}$
$\therefore R_{p}=5.63 \Omega$
$C_{2}=\sqrt{\frac{9}{5.63}}$

$$
=\quad 1.264
$$

(ii) $\quad \mathrm{C}_{1}$ and C_{2} are nearly equal (to the nearest whole number).

QUESTION ONE PART B

$$
\begin{aligned}
\mathrm{V} & =3.1 \text { volts } \pm 0.1 \\
I_{0}=\frac{V}{R} & =\frac{3.1}{4.7 \times 10^{3}} \quad A \\
& =0.659 \mathrm{~mA} \\
\mathrm{I}_{1} & =0.63 \mathrm{~mA}
\end{aligned}
$$

For $\quad \frac{I_{1}}{2}$
$t_{1}=3.9 \mathrm{~s}$
For $\quad \frac{I_{1}}{10}$
$\mathrm{t}_{2}=13.5 \mathrm{~s}$

\mathbf{I}	0.5	0.25	0.05
\mathbf{t}	0	3.6	12.5

(3 marks)

QUESTION TWO

(d)

$l(\mathrm{~cm})$	5	10	15	20	25	30
$\mathrm{t}(\mathrm{s})$	20.1	26.3	31.2	33.0	39.6	43.4
$\mathrm{~T}(\mathrm{~s})$	2.01	2.63	3.12	3.3	3.96	4.34
$\mathrm{~T}^{2}\left(\mathrm{~S}^{2}\right)$	4.04	6.92	9.73	10.89	15.68	19.84

(e) Graph.
(5 marks)

(f) Gradient $\begin{aligned} & =\frac{20}{16} \mathrm{~cm} / \mathrm{s}^{2} \\ & =\frac{0.20}{16} \mathrm{~cm} / \mathrm{s}^{2} \\ & =0.015625 \mathrm{~ms}^{-2}\end{aligned}$
(g) $l_{\mathrm{N}}=20 \mathrm{~cm}=0.2 \mathrm{~m}$
(i) $\mathrm{t}_{\mathrm{N}}=52.0$
(ii) $\mathrm{T}_{\mathrm{N}}=5.2$
(iii) $\mathrm{T}_{\mathrm{N}}{ }^{2}=27.04$
$\mathrm{H}=\frac{0.2}{27.04}=0.007396$
(iv) $\quad \frac{H}{S}=\frac{0.007396}{0.015625}$

$$
=\quad 0.4737
$$

