4.5 **PHYSICS (232)**

4.5.1 Physics Paper 1 (232/1)

SECTION A

1.

$$L = \frac{18.6 + 18.5 + 18.6 + 18.5}{4} \qquad \qquad \sqrt{(1)}$$
$$L = \frac{74.2}{4} = 18.55$$
students should record 18.6 cm $\qquad \sqrt{(1)}$

- 2. 3.46 mm read from photograph. $\sqrt{(1)}$
- **3.** Weight = Mass x gravity

OR (kilograms is the unit of measuring the mass and does not depict the force of gravity)

 $\sqrt{(1)}$

- 4. (a) BC = Constant $\sqrt{(1)}$
 - (b) CD decreasing $\sqrt{(1)}$

$$\frac{F}{A} = p \qquad \qquad \sqrt{(1)}$$

$$F = 5 \times 24 \qquad \sqrt{(1)}$$

$$F = 120 N$$

6. Volume of drop = Volume of patch $\sqrt{(1)}$

Ad = V

d = $\frac{V}{A}$

7. Flask painted black absorbs more heat;
causing more expansion of air above S than above T;
$$\sqrt{(1)}$$

hence S is pushed downwards and T upwards; $\sqrt{(1)}$

8.

$$50 x = 20 \times 1 \qquad \sqrt{(1)} \\ x = \frac{20}{50} \\ = 0.4 \text{ m} \qquad \sqrt{(1)}$$

9.

= 8 mm $\sqrt{(1)}$

$$\mathbf{11.} \quad \mathbf{A}_1 \mathbf{V}_1 = \mathbf{A}_2 \mathbf{V}_2 \qquad \qquad \mathbf{\sqrt{(1)}}$$

$$\frac{V_2}{V_1} = \frac{A_1}{A_2} \qquad \qquad \checkmark (1)$$

12.

10.

13.	(a)	BC	-	Solid changes to liquid	$\sqrt{(1)}$
	(b)	DE	-	Liquid changes to vapour	$\sqrt{(1)}$

14.- Collisions / bombardment of particles $\sqrt{(1)}$ with air molecules which are in random motion.

SECTION B

- 15. (a) (i) Displacement = Area under graph = $20 \times 8 \text{ m}$ = 160 m (3 marks)
 - (ii) After point B,

 $a = \frac{0 - 20}{4} \text{ ms}^{-2}$ = -5 ms^{-2} = 2 × -5 N

(iii) $F = ma = 2 \times -5 N$ = -10 N

(3 marks)

(b)

(2)

16. (a) (i) Force =
$$4 \text{ N}$$
 $\sqrt{(1)}$

(ii) Since velocity is constant. (uniform speed)
$$\sqrt{(1)}$$

Resultant force is zero = Force downwards is equal to force upwards

$$=$$
 4N $\sqrt{(1)}$

(b) (i) M.A =
$$\frac{load}{Effort} = \frac{20}{4}$$
 $\sqrt{(1)}$

$$=$$
 5 $\sqrt{(1)}$

(ii) V. R =
$$\frac{Effort \ dis \tan ce}{Load \ dis \tan ce}$$
; $\sqrt{(1)}$

$$\frac{40}{5};\qquad \qquad \sqrt{(1)}$$

=

=

(iii) Efficiency =
$$\frac{M.A}{V.R} \ge 100\%$$
 $\sqrt{(1)}$

$$= \frac{5}{8} \times 100 \qquad \qquad \sqrt{(1)}$$

$$=$$
 62.5% $\sqrt{(1)}$

17. (a)
$$l_1 = 142$$
, $T_1 = 290$ K, $T_2 = 298$ K, $l_2 = ?$
 $l_1 = l_2 = \frac{V_1}{V_2}$

$$\frac{T_1}{T_1} = \frac{T_2}{T_2} \text{ or } \overline{T_1} = \frac{T_2}{T_2}$$

$$I_2 = 142 \times \frac{298}{T_1} = \frac{142}{T_2} \times \frac{298}{T_1} = \frac{142}{T_1} \times \frac{298}{T_1} = \frac{142}{T_2} \times \frac{298}{T_1} = \frac{142}{T_1} \times \frac$$

$$l_2 = 142 \times \frac{1}{290}$$
 V(1)

$$=$$
 145.9 mm $\sqrt{(1)}$

(b) In the hot sun the temperature of the air increases; therefore the speed of the air $\sqrt{(1)}$ molecules increases hence the rate of collisions between the molecules and $\sqrt{(1)}$ tyre increases; The rate of change of momentum (pressure) $\sqrt{(1)}$ of the molecules also increases.

 $\sqrt{(1)}$

	(c)	(i)	Heat lost	=	Heat gained
			$M_{\rm M} \sim M_{\rm M} M_{\rm M}$		
			$mLv + M \Delta \theta C_{steam}$	=	M $\Delta \theta C_{water}$ $\sqrt{(1)}$
			$0.01 \text{ Lv} + 0.01 \times 30 \times 4200$	=	$0.1 \times 4200 \times 50 \qquad \sqrt{(1)}$
			0.01 Lv = 21000 - 120	60	$\sqrt{(1)}$
			Lv = $\frac{19740}{0.01}$		
			= 1.974 × 10	⁶ J Kg ⁻¹]	K ⁻¹ $\sqrt{(1)}$
		(ii)	- All the heat lost by the steam is n	not absor	bed by the water alone.
			- Reading the thermometer at wron	ng menis	scus resulting in wrong temperatures.
18.	(a)	Frictio	on between road and tyre.		$\sqrt{(1)}$
	(b)	Increa	ases the centripetal force acting on th	e bus.	$\sqrt{(1)}$
	(c)	(i)	- Weight - Tension		$\sqrt{(1)}$ $\sqrt{(1)}$
		(ii)	(I) $f = 2$ revolutions / sec		
			$T = \frac{2\pi}{\omega} = \frac{1}{f}$		$\sqrt{(1)}$
			$f = \frac{\omega}{2\pi} = 2$		$\sqrt{(1)}$
			$\omega = 2 \times 2\pi$		
			$= 4 \pi \text{ rad } \text{S}^{-1} =$	12.56	
			\simeq 13 rad S ⁻¹		$\sqrt{(1)}$
			(II) $T + mg = mr\omega^2$		$\sqrt{(1)}$
			$T = mr\omega^2 -mg$		
			$= 0.2 \times 0.4 (16\pi^2) - 0.4$	0.2×10^{-10}	$0 \qquad \sqrt{(1)}$
			= 10.63		
			= 10.6N		$\sqrt{(1)}$

19.	(a)	(i)	(I)	Volume of water of	lisplaced	=	$2 \times $	5		$\sqrt{(1)}$	
						=	10 cm	1 ³		$\sqrt{(1)}$	
			(II)	Mass = Volume	× densit	ty		$\sqrt{(1)}$			
				= 10 × 1							
				= 0.01 kg				$\sqrt{(1)}$			
				\therefore weight = 0.01	× 10			$\sqrt{(1)}$			
				= 0.1 N				$\sqrt{(1)}$			
		(ii)	Comb	ined weight =	upthr	ust					
				=	0.1 N	[$\sqrt{(1)}$	
		(iii)	Weigh	nt of liquid displace	d =	0.1N					
			Mass	of liquid displaced	=	0.01	kg	=	10 g	$\sqrt{(1)}$	
			Volun	ne of liquid displace	ed =	mas dens	ity	=	$\frac{10}{0.8}$		
								=	12.5 c	² cm ³	$\sqrt{(1)}$
			∴ Le	ngth submerged	=	2 <i>l</i>	=	12.5			
			(C.S .	$A \times l = volume$)							
				$0.8 \ l = 10$				$\sqrt{(1)}$			
				$l = \frac{10}{0.8}$							
				= 6.25 cm				$\sqrt{(1)}$			
	(b)	Use a	narrow	er test tube.				$\sqrt{(1)}$			

4.5.2 Physics Paper 2 (232/2)

4. (a)
$$V = f\lambda \sqrt{1}$$

$$\lambda = \frac{3.0 \times 10^8}{4 \times 10^6} \sqrt{1}$$

5.

-correct winding (1)

6. (a) Electrons arbsorb enough energy and are ejected $\sqrt{\text{leaving the electroscope positively}}$ charged $\sqrt{\text{the leaf is repelled by the stem}}$.

7.

Correct polarity on each magnet

1 mark for correct bias

- 1 mark for both ammeter and voltmeter
- 1 mark for means of varying the p.d. across the diode.

1

9.
$$^{226}_{88}Ra \longrightarrow ^4_2He + ^x_yQ$$

(a)
$$4 + x = 226$$

 $x = 222\sqrt{}$

(b)
$$2+y=88$$

 $y=86\sqrt{}$

estimate the quantity of charge $\sqrt{1}$ 10.

- test for insulating properties $\sqrt{1}$
- test for the sign of charge $\sqrt{1}$
- test for presence of charge $\sqrt{1}$

(any two correct)

1

1

It stops the fast moving electrons $\sqrt{}$ whose kinetic energy is converted to heat. 11.

12.

1 mark for answer

 $= 1.25 \times 10^{15}$ electrons

SECTION B

14.	(a)	(i)	Ι	D	-	soft iron arma	ture $$	1
			II	Е	-	contacts	\checkmark	1
		(ii)	I.		s the arr	is magnetised nature $$ the ha		1 1
			II.	attracte The ar	ed by th mature		The then loses magnetism. $$ m and $$ springs back making	1 1
	(b)	(i)	$I = \frac{P}{V}$	- √				1
			$=\frac{60}{240}$	$$				1
			= 0.25	$\delta A = \sqrt{1 + 1}$				1
		(ii)	$R = \frac{V}{I}$	7	\checkmark			1
			$R = \frac{2}{2}$	$\frac{40 \times 24}{60}$	<u>l0</u>	$\sqrt{\text{OR}} \frac{240}{0.25}$		1
			R = 9	60Ω	\checkmark			1

15.	(a)	(i)	resistance in the coils. $$		1
		(ii)	use of thicker copper wires. $$		1
	(b)	(i)	$\frac{N_p}{N_s} = \frac{V_p}{V_s} \qquad \qquad \checkmark$		1
			$=\frac{240}{12} \qquad \qquad \checkmark$		1
			$=\frac{20}{1}$ \checkmark		1
		(ii)	Power input $= V_p I_p$	\checkmark	1
			$= 240 \times 0.36$	\checkmark	1
			= 86.4W	\checkmark	1
		(iii)	Power output = 80W	\checkmark	1
		(iv)	Efficiency $\frac{power \ output}{power \ input}$	\checkmark	1
			$=\frac{80}{86.4}$		
			= 92.59%	\checkmark	1
4.5			a v	/	
16.	(a)	(i)	(I) $I_1 = \frac{V}{R_1}$	\checkmark	1
			(II) $I_2 = \frac{V}{R_2}$	\checkmark	1
			$(\text{III}) \qquad I_T = I_1 + I_2$		
			$I_T = \frac{V}{R_1} + \frac{V}{R_2}$	\checkmark	1
		(iii)	$I_T = \frac{V}{R_T}$	\checkmark	1
			17 17 17		

divide through by V

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}$$
, hence $R_T = \frac{R_1 R_2}{R_1 + R_2}$

Powered by: www.manyamfranchise.com

(iii) As the longitudinal waves pass $\sqrt{}$ molecule R moves along to either side. 1 For a crest, R moves away from source.

MANYAM FRANCHISE

4.5.3 Physics Paper 3 (232/3)

QUESTION ONE PART A

(a)	(i)	D	=	$0.38 \text{ mm} \pm 0.02$	(1 mark)
	(ii)	d	=	$0.28 \text{ mm} \pm 0.05$	(1 mark)
(b)	$C_1 = -$	$\frac{D}{d} = \frac{0.2}{0.2}$	$\frac{38}{28} = 1.3$	357	(1 mark)
(c)	l_1	=	38.5 c	em	(1 mark)
	l_2	=	61.5 c	em	(1 mark)
	$(l_1 < l_2)$	2)			
	$\frac{R_p}{9} =$	$=\frac{38.5}{61.5}$			
	$\therefore R_p$	= 5.63 Ω	<u>)</u>		(2 marks)
	$C_2 = C_2$	$\sqrt{\frac{9}{5.63}}$			(2 marks)
		=	1.264		(2 marks)
	(ii)	C_1 and	d C ₂ are	nearly equal (to the nearest whole number).	(1 mark)

QUESTION ONE PART B

V	=	$3.1 \text{ volts} \pm 0.1$	
$I_0 = -$	$\frac{V}{R} = \frac{1}{4.7}$	$\frac{3.1}{7 \times 10^3} A$	
	=	0.659 mA	(2 1)
I_1	=	0.63 mA	(3 marks)
For		$\frac{I_1}{2}$	
t ₁	=	3.9 s	(1 1)
For		$\frac{I_1}{10}$	(1 mark)
t ₂	=	13.5 s	

Ι	0.5	0.25	0.05
t	0	3.6	12.5

(3 marks)

QUESTION TWO

(d)

<i>l</i> (cm)	5	10	15	20	25	30
t (s)	20.1	26.3	31.2	33.0	39.6	43.4
T (s)	2.01	2.63	3.12	3.3	3.96	4.34
$T^2(S^2)$	4.04	6.92	9.73	10.89	15.68	19.84

(6 marks)

(e) Graph.

(5 marks)

MANYAM FRANCHISE

(f) Gradient =
$$\frac{20}{16} cm/s^2$$

= $\frac{0.20}{16} cm/s^2$
= 0.015625 ms⁻²
(g) $l_N = 20 cm = 0.2 m$
(i) $t_N = 52.0$
(ii) $T_N = 5.2$
(iii) $T_N^2 = 27.04$
H = $\frac{0.2}{27.04} = 0.007396$
(1 mark)
(i) $\frac{H}{S} = \frac{0.007396}{0.015625}$
= 0.4737

(2 marks)

