Name	Index Number
232/3	Powered By: www.manyamfranchise.com
PHYSICS	Candidate's Signature
(PRACTICAL)	
Paper 3	Date
Oct./Nov. 2014	

 $2\frac{1}{2}$ hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education

PHYSICS (PRACTICAL)

Paper 3

 $2\frac{1}{2}$ hours

Instructions to candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) Answer all the questions in the spaces provided in the question paper.
- (d) You are supposed to spend the first 15 minutes of the $2\frac{1}{2}$ hours allowed for this paper reading the whole paper carefully before commencing your work.
- (e) Marks are given for a clear record of the observations actually made, their suitability, accuracy and the use made of them.
- (f) Candidates are advised to record their observations as soon as they are made.
- (g) Non-programmable silent electronic calculators and KNEC mathematical tables may be used.
- (h) This paper consists of 9 printed pages.
- (i) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- (j) Candidates should answer the questions in English.

For Examiner's Use Only

Question 1

	a	b	С	d	e	f	g	THE PARTY	a .
Maximum Score	2	1	2	5	4	2	4	Total	
Candidate's Score					=				

Question 2

	d	e	f	g
Maximum Score	6	5	3	6
Candidate's Score				

П	ntal
	otai

Grand	
Total	

© 2014 The Kenya National Examinations Council

QUESTION 1

You are	provided	with	the	foll	owing
Tou aic	provided	AAICII	LIIC	TOI	o wing.

- a voltmeter
- a milliammeter
- a micrometer screw gauge (to be shared)
- a stopwatch
- a centre zero galvanometer
- a switch
- ten connecting wires (at least five with a crocodile clip on one end)
- a resistance wire mounted on a millimetre scale labelled AB.
- a resistance wire labelled P.
- a resistance wire labelled Q.
- a capacitor labelled C.
- a metre rule or half metre rule.
- two dry cells and a cell holder.
- a carbon resistor labelled R.

Proceed as follows:

PART A

(a)	Using the micrometer screw	gauge provided	measure th	ne diameter:
(a)	Using the included selew	gauge provided	, measure u	ic diameter.

101	-	•	•	n
111		of v	TITTE	
111	17	()I \	\sim 11 C	

 $D = \underline{\qquad \qquad (1 \text{ mark})}$

(ii) d of wire Q

d = (1 mark)

(b) Determine C_1 the value of the ratio $\frac{D}{d}$.

 $C_1 = \underline{\hspace{1cm}}$ (1 mark)

(c) Set up the circuit as shown in **Figure 1**. (Ensure that each of the wires **P** and **Q** is 50cm long)

Figure 1

Close the switch. Using the clip at the free end of the wire from the galvanometer, tap wire **AB** near end **A** and observe the deflection in the galvanometer.

- (ii) Then tap the wire near end **B** and again observe the deflection in the galvanometer.
- (iii) Now tap the wire **AB** at various points between **A** and **B** to obtain a point **K** where there is no deflection in the galvanometer.
 - (I) Determine the length L_1 , the distance from A to K.

$$\mathbf{L}_{1} = \underline{\hspace{1cm}} \tag{1 mark}$$

(II) Determine the length L_2 , the distance from B to K.

$$L_2 =$$
 (1 mark)

(d)	(i)	Given that the resistance $\mathbf{R}_{\mathbf{Q}}$ of Q is 9.0 ohms, determine the re $\mathbf{R}_{\mathbf{P}}$ of P using the expression:	esistance
		$\frac{R_P}{R_Q} = \frac{L_1}{L_2}$	(2 marks)
	(ii)	Determine the value of C_2 given that, $C_2 = \sqrt{\frac{R_Q}{R_P}}$	(2 marks)
		C2	
	(iii)	Compare the value of C_1 (in part (b)) with that of C_2 .	(1 mark)

PART B

(e) Set up the circuit shown in **Figure 2.** S and T are crocodile clips.

(i) Charge the capacitor C by connecting the crocodile clip to S. Record the reading of the voltmeter, V.

 $\mathbf{V} = \underline{\hspace{1cm}} \tag{1 mark}$

(ii) Calculate the value of the current I_o , given that $I_o = \frac{V}{R}$ (where $R = 4.7 \times 10^3 \Omega$) (3 marks)

.....

(f) Discharge the capacitor by disconnecting the crocodile clip from S and connecting it to T. Observe and record the highest reading of the milliammeter I_1 . (This is the current at $t_0 = 0$).

(You may have to repeat the process to obtain an accurate value).

$$I_1 = \underline{\hspace{1cm}} (1 \text{ mark})$$

- (ii) Recharge the capacitor by connecting the crocodile clip to S.
- (iii) Discharge the capacitor and at the same time start the stop watch to measure the time $\mathbf{t_1}$ taken for the current to decrease to half the value of $\mathbf{I_1}$ i.e $\left(\frac{1}{2}\mathbf{I_1}\right)$.

$$\mathbf{t}_{1} = \underline{\hspace{1cm}} (1 \text{ mark})$$

(g) (i) Recharge the capacitor and repeat the procedure in f(iii) to measure the time $\mathbf{t_2}$ taken for the current to decrease to one tenth of the value of $\mathbf{I_1}$ i.e $(\frac{1}{10}\mathbf{I_1})$.

t₂ = _____

(1 mark)

(ii) Use the values of the currents $I_1, \frac{1}{2}I_1, \frac{1}{10}I_1$ and their corresponding times to draw a graph of current I (y axis) against time on the grid provided.

(3 marks)

Kenya Certificate of Secondary Education, 2014 Physics Paper 3 PRACTICAL

2403000

Question 2

You are provided with the following:

- a stand boss and clamp
- two wooden blocks
- a stopwatch
- a half metre rule or metre rule
- a mettallic rod
- a bare copper wire labelled **M** attached to a crocodile clip
- a bare copper wire labelled **N** attached to a crocodile clip.

Proceed as follows:

(a) Clamp wire **M** between the wooden blocks so that the length *l* of wire between the wooden blocks and the point of its attachment on the crocodile clip is 5 cm. Clamp the mettallic rod at its mid point using the crocodile clip attached to wire **M**. (See figure 3)

Figure 3

- (b) Displace the rod through a small angle in a horizontal plane about its mid point so that when released, it oscillates in the same plane. Record the time t for 10 oscillations and determine the period **T** in **Table 1**.
- (c) Repeat part (b) for the other lengths of wire M shown in Table 1.

Kenya Certificate of Secondary Education, 2014 Physics Paper 3 PRACTICAL

2403000 Powered By: www.manyamfranchise.com (d) Complete **Table 1**.

(6 marks)

Table 1

l (cm)	5	10	15	20	25	30
t(s)						
T (s)						
$T^{2}(s^{2})$						

(e) Plot a graph of l (y axis) against T^2 .

(5 marks)

Kenya Certificate of Secondary Education, 2014 Physics Paper 3

PRACTICAL

Powered By: www.manyamfranchise.com

(f) ·	Deter	rmine the gradient of the graph, S.	(3 marks)
(g)	Now	replace wire \mathbf{M} with wire \mathbf{N} in the set up.	
	(i)	For $l = 20$ cm, displace the rod through a small angle in a horizontal measure the time $\mathbf{t}_{\mathbf{N}}$ for 10 oscillations. $\mathbf{t}_{\mathbf{N}} = \underline{\qquad}$	plane and (1 mark)
	(ii)	Determine the period $T_N =$	(1 mark)
	(iii)	Calculate T _N ²	(1 mark)
	(iv)	Determine the value of H given that $H = \frac{0.2}{T_N^2}$.	(1 mark)
	(v)	Calculate the value of $\frac{H}{S}$.	(2 marks)

THIS IS THE LAST PRINTED PAGE.