### 4.7 DRAWING AND DESIGN (449)

### 4.7.1 Drawing and Design Paper 1 (449/1)

## SECTION A (50 marks)

Answer all the questions in this section on the answer sheets provided.

1. (a) Outline three qualities of an entrepreneur.
2. Figure 1 shows an engineering template drawn by utilizing six types of lines labelled $\mathbf{A}-\mathrm{F}$.

3. (a) State three classifications of metals and give one example of each.
(b) Construct an internal tangent to touch the circles shown in Figure 2


Figure 2
5. (a) Use sketches to describe three types of dimensions in drawing.
(b) Construct a diagonal scale in which 30 mm represent 1 km to read up to 4 km . Indicate a distance of 2.84 km on the scale.
6. Figure $\mathbf{3}$ shows the front elevation and incomplete plan of a truncated square pyramid.

Complete the plan and draw the true shape of the cut face.



Figure 3
7. Make pictorial sketches of the following fastening devices:
(a) Gib head key.
(b) Woodruff key.
(c) Feather key.
8. List six computer programmes used to produce technical drawings.
9. Figure 4 shows a simple shaped block drawn in isometric projection.


Figure 4
Draw the front elevation and plan of the block in first angle projection.
10. Figure 5 shows three views of a block drawn in third angle projection.


Figure 5
Draw the block in oblique cavalier projection.

## SECTION B (20 marks)

This question is compulsory.
It should be answered on the A3 paper provided.
Candidates are advised not to spend more than one hour on this question.
11. Figure 6 shows parts of a pulley bracket drawn in first angle projection.


Figure 6
Assemble the parts and draw Full Size the following views in first angle projection:
(a) Front elevation
(b) Sectional plan along the cutting plane $\mathrm{X}-\mathrm{X}$.

Do not include hidden details.

## SECTION C (30 marks)

## Answer any two questions from this section on the A3 paper provided

12. Figure 7 shows two views of an axle boss drawn in first angle projection. Draw the boss in isometric projection taking $X$ as the lowest point.

Include six dimensions.


Figure 7
13. Figure 8 shows an elevation of a joint formed by two pipes $A$ and $B$ at a right angle. Draw the development of the pipes.


Figure 8
14. An archimedean spiral has its nearest point 15 mm from the centre (pole) and the furthest point 85 mm from the centre. Draw the spiral.

