THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education

233/3

CHEMISTRY

Paper 3

(PRACTICAL) Nov. 2019 - 21/4 hours

Name	Index Number
Candidate's Signature	Date

Instructions to candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) Answer all the questions in the spaces provided in the question paper.
- (d) You are not allowed to start working with the apparatus for the first 15 minutes of the 2½ hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus that you may need.
- (e) All working must be clearly shown where necessary.
- (f) KNEC mathematical tables and silent electronic calculators may be used.
- (g) This paper consists of 8 printed pages.
- (h) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- Candidates should answer the questions in English.

For Examiner's Use Only

Question	Maximum Score	Candidate's Score
1	16	1 /
2	14	1
6/3	10	-1CDN 0"
Total Score	40 100	- J

1. You are provided with:

• Solution A: aqueous Iron(III) sulphate.

• Solution B: aqueous potassium iodide.

• Solution C: mixture of aqueous starch and sodium thiosulphate solution.

You are required to determine the rate of reaction between aqueous Iron(III) sulphate (solution A) and aqueous potassium iodide (solution B).

Procedure:

- (i) Place 5 test tubes on a test tube rack and label them 1, 2, 3, 4 and 5. Fill a burette with solution A. To each test tube place 3 cm³ of solution A from the burette.
- (ii) Clean the burette and fill it with **solution B**. Place 8 cm³ of solution B into a 100 ml beaker from the burette.
- (iii) Using a 10 ml measuring cylinder, add 2 cm³ of **solution C** to the beaker containing **solution B** followed by 7 cm³ of distilled water measured using the same 10 ml measuring cylinder.
- (iv) Pour the contents of test tube 1 to the mixture in the beaker and immediately start the stop watch. Swirl the contents of the beaker. Record in **table 1** the time taken for a blue colour to just appear. Measure the temperature of the final mixture and record in the space provided. Wash the beaker and proceed to step (v).
- (v) Place 6 cm³ of solution B into 100 ml beaker from the burette. Add 2 cm³ of solution C followed by 9 cm³ of distilled water. Add solution A in test tube 2 to the mixture in the beaker and immediately start the stop watch. Swirl the contents of the beaker. Record in table 1 the time taken for a blue colour to just appear. This is experiment 2.
- (vi) Wash the beaker. Repeat step (v) with solution A in test tubes 3, 4 and 5 with corresponding volumes of solution B, solution C and distilled water as indicated in table 1 for experiments 3, 4 and 5.
 - (a) Temperature of final mixture°C (1 mark)

(b) Table 1

	Volume (cm ³) of				Time
Experiment	Solution A	Solution B	Solution C	Distilled Water	(seconds)
1	3	8	2	7	
2	3	6	2	9	
3	3	5	2	10	
4	3	4	2	11	
5	3	3	2	12	

(3 marks)

- (c) Complete table 2 for each experiment by:
 - (i) calculating the square of volume of solution B, B² and filling in the table.
 (ii) calculating the rate of reaction which is given by the expression
 - (ii) calculating the rate of reaction which is given by the express $Rate = \frac{1}{Time} \times 1000 \, s^{-1} \text{ and filling in the table.}$

Table 2

Experiment	B ²	Rate = $\frac{1}{\text{Time}} \times 1000 \text{s}^{-1}$
1		
2		
3		The Landau Control of the Control of
4		
5	glach Life	de la adolgi

(5 marks)

(3 marks)

(d) Plot a graph of rate (y-axis) against B^2

(e) Using the graph, determine the time that it will take for the blue colour to appear if the experiment is repeated using the following mixture:

Volume (cm ³) of			
Solution A	Solution B	Solution C	Distilled water
3	7	2	8

(2 marks)

	3	
		14
		37
	and to notassium lodide.	
(f)	In this experiment the rate of reaction was determined with respect to pounds.	
(1)	In this experiment the rate of reaction was determined with respect to potassium iodide. Describe how the rate of the reaction can be determined with respect to Iron(III)	
	Describe how the rate of the reaction can be determined with respect to How	
	Describe how the rate of the reaction can be determined with respect to Iron(III) (2 marks)	
	sulphate.	
Vou	re provided with solid P. Carry out the following tests and record the observations and	
infere	nces in the spaces provided.	
(a)	Place about one-third of solid P in a dry test tube and heat it strongly. Test any gases	
(4)	1 and wish and literary manor	

(a produced with red litmus paper.

Observations	Inferences

(2 marks)

(1 mark)

Kenya Certificate of Secondary Education, 2019

233/3

Turn over

2.

(b)	Place the remaining amount of solid P in a boiling tube. Add about 15 cm ³ of distilled
	water and shake to dissolve the solid. Use about 2 cm ³ portions of the solution in a test
	tube for each of the tests (i) to (iv).

(i)	To the first	portion of the solution add aque	eous sodium hydroxide
-----	--------------	----------------------------------	-----------------------

•	
Observations	Inferences
	(2 1-)
(1 mark)	(2 marks)

(ii) To the second portion of the solution add 2 or 3 drops of aqueous barium nitrate.

To the booking portion of the section		
Observations	Inferences	
(1 mark)	(1 mark)	

(iii) To the third portion of the solution add 2 or 3 drops of aqueous lead(II) nitrate. Warm the mixture.

Observations	Inferences
	, , , , , , , , , , , , , , , , , , , ,
(1 mark)	(1 mark)

(iv)	To solid D in the test tube add about 2 cm3 of distilled water. Shake and label this
	as chlorine water. Add all the chlorine water to the fourth portion of the solution.
	Shake the mixture and then add 3 drops of starch solution.

Observations	Inferences
(2 marks)	(1 mark)

((c)	Give the	formulae of	the ions	present in	solid P	,
١	(-	Olve the	ioiiiiuiac oi	the lons	DI COCIIL III	SULLU I	,

(i)	cation	(½ mark)
(ii)	Anion	(½ mark

- 3. You are provided with **liquid Q**. Carry out the following tests and record the observations and inferences in the spaces provided.
 - (a) Place 2 drops of liquid Q on a watch glass. Ignite the liquid with a Bunsen burner flame.

Observations	Inferences
(1 mark)	(1 mark)

	ч		
7	-		
ı	-		
5	4		
Ξ	_		

(b)	Place about 2 cm ³ of liquid Q in a test tube. Add about 2 cm ³ of distilled water and sha the mixture.	
	Observations	Inferences

Observations Inferences

(1 mark) (1 mark)

(c) To about 2 cm³ of liquid Q in a test tube, add all of the solid sodium hydrogen carbonate provided.

Observations	Inferences
(1 mark)	(1 mark)

(d) To about 2 cm³ of liquid Q in a test tube, add 2 or 3 drops of bromine water.

Observations	Inferences

(e) To about 2 cm³ of liquid Q in a test tube, add 2 or 3 drops of acidified potassium dichomate(VI) and warm the mixture.

Observations	Inferences

(1 mark)

(1 mark)

(1 mark)

(1 mark)

THIS IS THE LAST PRINTED PAGE.

Kenya Certificate of Secondary Education, 2019 233/3