Name:	Marking	Guide	Inc	lex No.		Adm No
			Ca	ndidate's Sig	nature	
			Da	te:		
232/3						
PHVSI	CS PAPER 3	7				

(PRACTICAL)

TIME: 2 1/2 hours

KASSUJET EXAMINATION

Kenya Certificate of Secondary Education

PHYSICS (PRACTICAL) Paper 3

TIME: 2 ½ HOURS

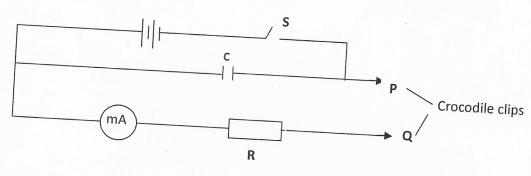
Instructions

- Write your name and index number in the spaces provided above.
- Sign and write the date of examination in the spaces provided above.
- Answer ALL questions in the spaces provided in the question paper.
- You are supposed to spend the first 15 minutes of the 2 ½ hrs allowed for this paper reading the whole paper carefully before commencing your work.
- Marks are given for a clear record of the observations actually made, their suitability, accuracy and the use made of them.
- Candidates are advised to record their observations as soon as they are made.
- Non-programmable silent electronic calculators and KNEC mathematical tables may be used except where stated otherwise.
- This paper consists of 7 printed pages.
- Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

For Examiner's Use Only

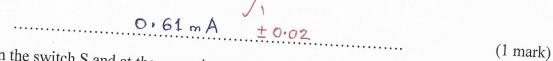
Question 1	С	d	g	h	i	(j)	(k)		T	OTAL
Maximum Score	1	1	8	5	2	2	1			20
Candidate's Score										
		c	e	f	g	h	i	j	k	TOTAL
Question 2										
Maximum Score		1	*	6		5	3	3	2	20
Candidate's Score								,		

GRAND TOTAL	


Question one

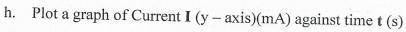
You are provided with the following:

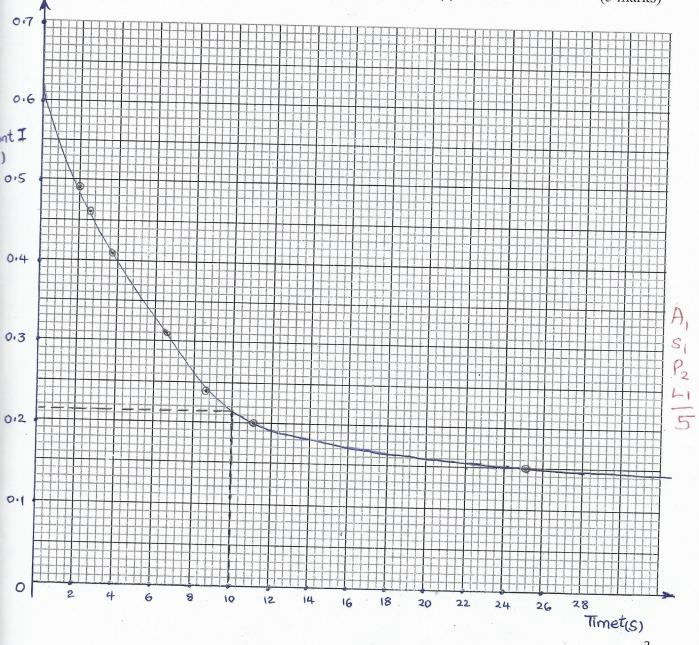
- 2 new dry cells size D
- A cell holder
- A switch
- A millimeter of range 0 to 1 mA
- A capacitor labeled C
- 8 connecting wires; at least four with crocodile clips on one end
- A carbon resistor labeled **R**


Proceed as follows

a. Connect the circuit as shown in the **figure 1** below, where $\bf P$ and $\bf Q$ are crocodile clips.

- b. Close the switch S
- c. Name the process which takes place when the switch ${\bf S}$ is closed


d. Connect the crocodile clips P and Q. Observe and record the highest reading of the


- e. Open the switch S and at the same time start the stopwatch to measure the time taken for the current to decrease to four fifth the value of I_0 i.e. $^4/_5$ I_0 . Record your value in the
- Close the switch S for a second time and observe the deflection in the millimeter. (the pointer should rise back to the same initial value $I_{o)}$

g. Repeat part (b) for other values of current as shown in the **table 1** below. (8 marks)

Current I (mA)	⁴ / ₅ I ₀	³ / ₄ I ₀	$^{2}/_{3} I_{o}$	$1/2 I_0$	$^2/_5 I_0$	$^{1}/_{3}$ I_{0}	1/4 I ₀	
Your calculated fraction of I _o (mA)	0:49	0,46	0.41	0.31	0:24	0.20	0:15	1
Time t (s)	0.20	0.26	3·70 \/\	6.58	8-64	11.04	25:50	t

(5 marks)

i. From your graph, find W the value of I when t = 10s.

j. Given that A = 10W, determine the value of A.

$$A = 10 \times 0.23 \times 10^{-3} /$$

$$= 2.3 \times 10^{-3} c /$$

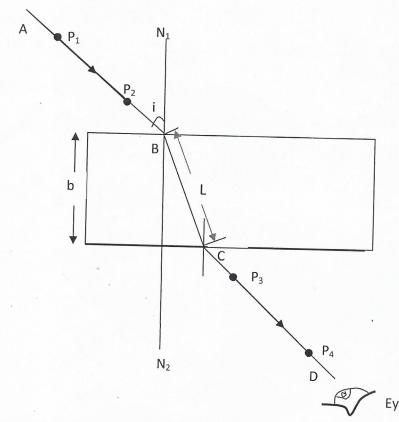
(2 marks)

(1 mark)

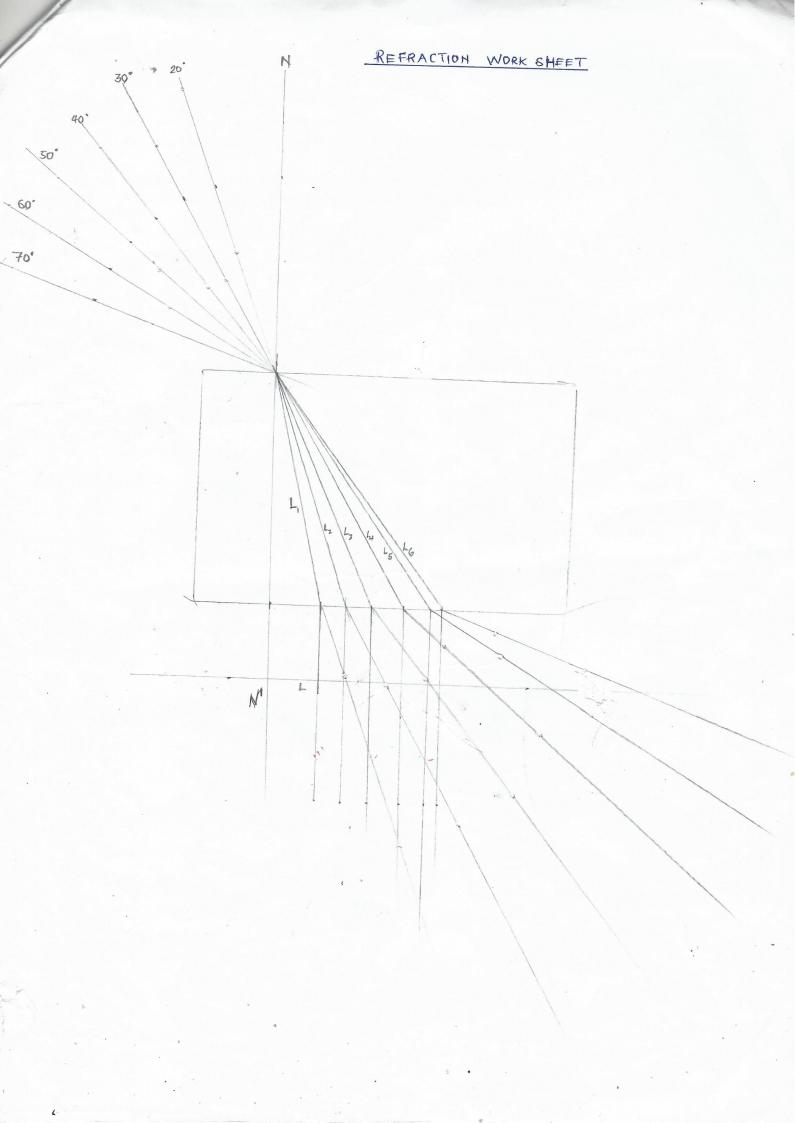
k. Determine the voltage across R at t = 10s given that $R = 4.7k\Omega$

$$V = IR$$

= 2.3 × 10⁻⁴ × 4.7 × 10³
= 1.081 ×


Question Two

You are provided with the following;

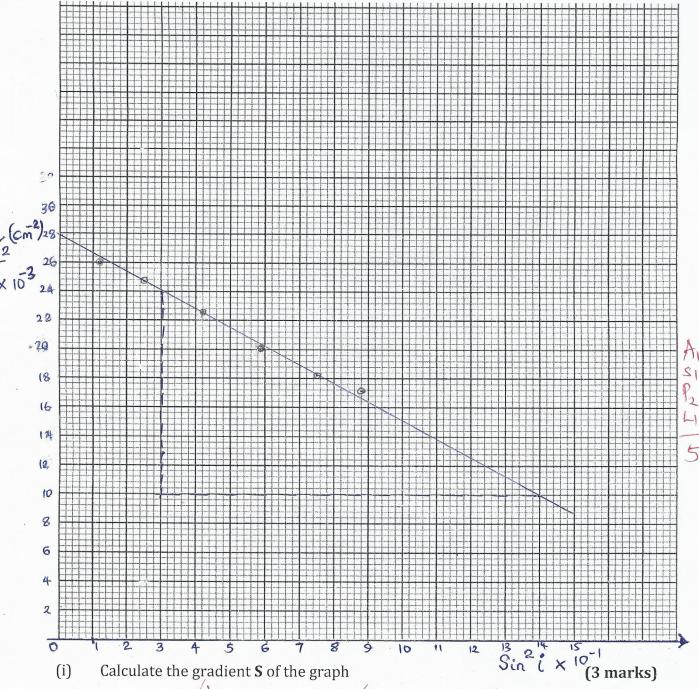

- a rectangular glass block
- 4 optical pins
- 2 thumb pins
- a soft board
- a plain paper

Proceed as follows:

(a) Place the glass block on the plain paper with one of the largest face upper most. Trace round the glass block using a pencil as shown below.

- (b) Remove the glass block and construct a normal at B. Construct an incident ray AB of angle of incidence, $i = 20^{\circ}$.
- (c) Measure the breadth **b** of the glass block (1 mark) $6.0 \text{ cm} \pm 0.2$

- (c) Replace the glass block and trace the ray ABCD using the optical pins.
- (d) Remove the glass block and draw the path of the ray ABCD using a pencil. (e)
- Measure the length L and record it in the table below


Angle i ⁰	L (cm)	L ² (cm) ²	$\frac{1}{L^2}$ (cm-2)	QL 2
20	6.2 1/2	38:44		Sin²i
30	6.4 1/2	40196	0:0260	0:1170
40	6.7 1/2	44.89	0.0244	0.25
50	7-1 1/2	50:41		0.4132
60	7.4 1/2		0.0148	0.5868
70	V	54.76	0.0183	0.75
	7.6 V2	57.76	0.0173	0.8830

(6 marks)

- Repeat the procedure above for the angles of incidence given. (f)
- Calculate the values of $\frac{1}{L^2}$ and $\sin^2 I$; and record in the table above. (g)

(h) Plot a graph of
$$\frac{1}{L^2}$$
 (y-axis) against Sin²i.

(5 marks)

(i)

Calculate the gradient S of the graph
$$Slope = \Delta \frac{1/2}{\Delta \sin^2 c} = \frac{(24 - 10) \times 10^{-3}}{(14 - 3) \times 10^{-1}} = \frac{0.14}{1.1}$$

$$= 0.0127272 \text{ cm}^2$$

Given that the equation of that graph is; $\frac{1}{L^2} = \left(\frac{1}{n^2b^2}\right) \sin^2 t + \frac{1}{b^2}$

(j) Determine the value of n

(3 marks)

Gradient = 0.0127272 =
$$\frac{1}{n^2b^2}$$

but $b = 6.0 \text{ cm}$
 $0.0127272 = \frac{1}{n^2 \times 36}$
 $\frac{1}{n^2} = 0.0127272 \times 36$
 $\frac{1}{n^2} = 0.4581812$
 $n^2 = 2.18254$
 $n = \sqrt{2.18254} = 1.47734$

(k) Present your work sheet; attached to the exam paper

(2 mark)