| Name: | Marking | Guide | Inc | lex No. | | Adm No | |-------|------------|-------|-----|---------------|--------|--------| | | | | Ca | ndidate's Sig | nature | | | | | | Da | te: | | | | 232/3 | | | | | | | | PHVSI | CS PAPER 3 | 7 | | | | | (PRACTICAL) TIME: 2 1/2 hours #### KASSUJET EXAMINATION ### Kenya Certificate of Secondary Education ## PHYSICS (PRACTICAL) Paper 3 TIME: 2 ½ HOURS ## **Instructions** - Write your name and index number in the spaces provided above. - Sign and write the date of examination in the spaces provided above. - Answer ALL questions in the spaces provided in the question paper. - You are supposed to spend the first 15 minutes of the 2 ½ hrs allowed for this paper reading the whole paper carefully before commencing your work. - Marks are given for a clear record of the observations actually made, their suitability, accuracy and the use made of them. - Candidates are advised to record their observations as soon as they are made. - Non-programmable silent electronic calculators and KNEC mathematical tables may be used except where stated otherwise. - This paper consists of 7 printed pages. - Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing. #### For Examiner's Use Only | Question 1 | С | d | g | h | i | (j) | (k) | | T | OTAL | |-------------------|---|---|---|---|---|-----|-----|---|---|-------| | Maximum Score | 1 | 1 | 8 | 5 | 2 | 2 | 1 | | | 20 | | Candidate's Score | | | | | | | | | | | | | | c | e | f | g | h | i | j | k | TOTAL | | Question 2 | | | | | | | | | | | | Maximum Score | | 1 | * | 6 | | 5 | 3 | 3 | 2 | 20 | | Candidate's Score | | | | | | | | , | | | | GRAND TOTAL | | |-------------|--| | | | # Question one You are provided with the following: - 2 new dry cells size D - A cell holder - A switch - A millimeter of range 0 to 1 mA - A capacitor labeled C - 8 connecting wires; at least four with crocodile clips on one end - A carbon resistor labeled **R** # Proceed as follows a. Connect the circuit as shown in the **figure 1** below, where $\bf P$ and $\bf Q$ are crocodile clips. - b. Close the switch S - c. Name the process which takes place when the switch ${\bf S}$ is closed d. Connect the crocodile clips P and Q. Observe and record the highest reading of the - e. Open the switch S and at the same time start the stopwatch to measure the time taken for the current to decrease to four fifth the value of I_0 i.e. $^4/_5$ I_0 . Record your value in the - Close the switch S for a second time and observe the deflection in the millimeter. (the pointer should rise back to the same initial value $I_{o)}$ g. Repeat part (b) for other values of current as shown in the **table 1** below. (8 marks) | Current I (mA) | ⁴ / ₅ I ₀ | ³ / ₄ I ₀ | $^{2}/_{3} I_{o}$ | $1/2 I_0$ | $^2/_5 I_0$ | $^{1}/_{3}$ I_{0} | 1/4 I ₀ | | |---|--|--|-------------------|-----------|-------------|---------------------|--------------------|---| | Your calculated fraction of I _o (mA) | 0:49 | 0,46 | 0.41 | 0.31 | 0:24 | 0.20 | 0:15 | 1 | | Time t (s) | 0.20 | 0.26 | 3·70
\/\ | 6.58 | 8-64 | 11.04 | 25:50 | t | (5 marks) i. From your graph, find W the value of I when t = 10s. j. Given that A = 10W, determine the value of A. $$A = 10 \times 0.23 \times 10^{-3} /$$ $$= 2.3 \times 10^{-3} c /$$ (2 marks) (1 mark) k. Determine the voltage across R at t = 10s given that $R = 4.7k\Omega$ $$V = IR$$ = 2.3 × 10⁻⁴ × 4.7 × 10³ = 1.081 × # **Question Two** You are provided with the following; - a rectangular glass block - 4 optical pins - 2 thumb pins - a soft board - a plain paper Proceed as follows: (a) Place the glass block on the plain paper with one of the largest face upper most. Trace round the glass block using a pencil as shown below. - (b) Remove the glass block and construct a normal at B. Construct an incident ray AB of angle of incidence, $i = 20^{\circ}$. - (c) Measure the breadth **b** of the glass block (1 mark) $6.0 \text{ cm} \pm 0.2$ - (c) Replace the glass block and trace the ray ABCD using the optical pins. - (d) Remove the glass block and draw the path of the ray ABCD using a pencil. (e) - Measure the length L and record it in the table below | Angle i ⁰ | L (cm) | L ² (cm) ² | $\frac{1}{L^2}$ (cm-2) | QL 2 | |----------------------|---------|----------------------------------|------------------------|--------| | 20 | 6.2 1/2 | 38:44 | | Sin²i | | 30 | 6.4 1/2 | 40196 | 0:0260 | 0:1170 | | 40 | 6.7 1/2 | 44.89 | 0.0244 | 0.25 | | 50 | 7-1 1/2 | 50:41 | | 0.4132 | | 60 | 7.4 1/2 | | 0.0148 | 0.5868 | | 70 | V | 54.76 | 0.0183 | 0.75 | | | 7.6 V2 | 57.76 | 0.0173 | 0.8830 | (6 marks) - Repeat the procedure above for the angles of incidence given. (f) - Calculate the values of $\frac{1}{L^2}$ and $\sin^2 I$; and record in the table above. (g) (h) Plot a graph of $$\frac{1}{L^2}$$ (y-axis) against Sin²i. ## (5 marks) (i) Calculate the gradient S of the graph $$Slope = \Delta \frac{1/2}{\Delta \sin^2 c} = \frac{(24 - 10) \times 10^{-3}}{(14 - 3) \times 10^{-1}} = \frac{0.14}{1.1}$$ $$= 0.0127272 \text{ cm}^2$$ Given that the equation of that graph is; $\frac{1}{L^2} = \left(\frac{1}{n^2b^2}\right) \sin^2 t + \frac{1}{b^2}$ (j) Determine the value of n (3 marks) Gradient = 0.0127272 = $$\frac{1}{n^2b^2}$$ but $b = 6.0 \text{ cm}$ $0.0127272 = \frac{1}{n^2 \times 36}$ $\frac{1}{n^2} = 0.0127272 \times 36$ $\frac{1}{n^2} = 0.4581812$ $n^2 = 2.18254$ $n = \sqrt{2.18254} = 1.47734$ (k) Present your work sheet; attached to the exam paper (2 mark)