5.2 MATHEMATICS ALTERNATIVE B (122)

5.2.1 Mathematics a Iternative b (122/1)

		_	
1.	- 3 ^A 5-+ 7h÷+2 ^A 3+- 6h	1	
	=- 3^- 12h÷2-^ 9 h	M1	
	= 36 ÷- 18	M1	
	=- 2	A1 3	
2.	(a) Number is 7532	B1	
	(b) Total value of hundreds digit = 500	B1 2	
3.	$\frac{2}{3} \# \frac{27}{5} - 2\frac{3}{10} = \frac{18}{5} - \frac{23}{10} = \frac{13}{10}$	M1	
	$\frac{3}{5}$, $4\frac{1}{2} + 1\frac{3}{5} = \frac{3}{5} \# \frac{2}{9} + \frac{8}{5} = \frac{26}{15}$	M1	
	$\frac{13}{10}$ $\frac{26}{15} = \frac{13}{10} \# \frac{15}{26} = \frac{3}{4}$	A1	
		3	
4.	Nekesa: Mwita: Auma = 600 : 750 : 650 = 12 : 15 : 13	B1	
	Amount Mwita got more than Nekesa		
	$=\frac{15}{40}$ # 1200 - $\frac{12}{40}$ # 1200	M1	= 3 # 1200
	= 450 - 360 = 90	A1 3	= 90
5.	h = 3r - 1 (h= 3 # 2 - 1= 5		
	$\frac{7r^2 + 2rh}{\sqrt{4h - 2r}} = \frac{7 \# 2^2 + 2 \# 2 \# 5}{\sqrt{4 \# 5 - 2 \# 2}}$ $= \frac{28 + 20}{\sqrt{16}}$	M1	
	$=\frac{48}{4}$	M1	
	= 12	A1 3	
		1 3	

6.	Area of each face $=\frac{1176}{6} = 196$	M1	
	Length of side $\sqrt{196}$	M1	
	= 14	A1	
7.	R	B1 B2	Line, PR, drawn and divided into six (6) equal parts. Joining QR and drawing five lines
	P	3	parallel to QR intersecting with PQ.
8.	$\sin x = \frac{3}{5} and \cos = \frac{4}{5}$	B1	
	$\therefore 2\sin x - \cos x = 2 \times \frac{3}{5} - \frac{4}{5}$	M1	
	$= \frac{6}{5} - \frac{4}{5} = \frac{2}{5}$	A1 3	
9.	5x + 6x(10) = 2600	M1	161-
	5x + 60x = 2600		
1	$x = \frac{2600}{65}$	M1	
	= 40	A1	
	Total number of coins: = $40 + 6 \times 40 = 280$	B1 4	
10.	$\frac{3^{-2} \times 81^{\frac{3}{2}}}{4^{-3} \div 8^{\frac{1}{3}}} = \frac{3^{-2} \times 3^{2 \times 3}}{\frac{1}{2^6} \div 2}$	M1 M1	√ powers of 3 √ powers of 2
	$=3^4\times 2^7$	A1	
	= 10368	B1 4	

11.	Marked price = $5750 \times 1.12 = 6440$	M1
	$\% \text{ discount} = \frac{6440 - 6118 \times 100}{6440}$	M1
	= 5%	A1 3
12	$9a^2 - \frac{16}{b^2c^2} = (3a)^2 - \frac{4^2}{(bc)^2}$	M1
	$9a^{2} - \frac{16}{b^{2}c^{2}} = (3a)^{2} - \frac{4^{2}}{(bc)^{2}}$ $= \left(3a + \frac{4}{bc}\right)\left(3a - \frac{4}{bc}\right)$	A1 2
13.	(a)	
	12 28 54 2 6 14 27 2 3 7 27 3 1 7 9 3 1 7 3 3 1 7 1 7 1 1 1	M1 √ factorization
	The height (LCM) = $2^2 \times 3^3 \times 7$	M1
	= 756	A1
	(b) Number of books = $\frac{756}{12}$ = 63	B1 4
14.	Let number of sides ben	
	$\therefore (2n-4) \times 90 = 1260$	M1
	$2n \times 90 = 1260 + 360$	
	$n = \frac{1620}{180} = 9$	A1
	Size of each angle = $\frac{1260}{9}$ = 140°	B1 3

15 L.S.F = $\frac{7.5}{5}$ = 1.5 \therefore A.S.F = 1.5^2 = 2.25 Area of smaller triangle = $\frac{22.5}{2.25}$ $= 10 \text{ cm}^2$ 16. $r^2 \# \frac{22}{7} \# \frac{45}{360} = 77$ $r = \sqrt{\frac{77 \# 360 \# 7}{45 \# 22}}$ $= 14$ Circumference = $2 \# 14 \# \frac{22}{7}$ $= 88 \text{ cm}$ 17. (a) (i) Volume of prism = Area of crosssection # L $= ; 1.4 \# 0.8 - \frac{1}{2} \# \frac{22}{7} \# ^0.7 \text{ fig} \# 2$ $= 0.35 \# 2$ $= 0.7 \text{ m}^3$ (ii) Total S.A $= 0.8 \# 2 \# 2 + 2 \# 1.4 + 0.7 \# \frac{22}{7} \# 2$ $+ 0.35 \# 2$ $= 6 + 4.4 + 0.7$ MII cross section				
Area of smaller triangle = $\frac{22.5}{2.25}$ M1 $= 10 \text{ cm}^{2}$ 16. $r^{2} \# \frac{22}{7} \# \frac{45}{360} = 77$ $r = \sqrt{\frac{77 \# 360 \# 7}{45 \# 22}}$ $= 14$ Circumference = $2 \# 14 \# \frac{22}{7}$ $= 88 \text{ cm}$ A1 17. (a) (i) Volume of prism = Area of crosssection # L $= ; 1.4 \# 0.8 - \frac{1}{2} \# \frac{22}{7} \# ^{0}.7 \text{ fight } 2$ $= 0.35 \# 2$ $= 0.7 \text{ m}^{3}$ (ii) Total S.A $= 0.8 \# 2 \# 2 + 2 \# 1.4 + 0.7 \# \frac{22}{7} \# 2$ $+ 0.35 \# 2$ M1 M1 rectangular triangular	15	L.S.F = $\frac{7.5}{5}$ = 1.5		
$= 10 \text{ cm}^{2}$ $= 10 \text{ cm}^{2}$ $16. r^{2} \# \frac{22}{7} \# \frac{45}{360} = 77$ $r = \sqrt{\frac{77 \# 360 \# 7}{45 \# 22}}$ $= 14$ $\text{Circumference} = 2 \# 14 \# \frac{22}{7}$ $= 88 \text{ cm}$ $17. \text{(a)} \text{(i)} \text{Volume of prism} = \text{Area of cross section } \# \text{L}$ $= ; 1.4 \# 0.8 - \frac{1}{2} \# \frac{22}{7} \# \% .7 \text{ fig# 2}$ $= 0.35 \# 2$ $= 0.7 \text{ m}^{3}$ $\text{(ii)} \text{Total S.A}$ $= 0.8 \# 2 \# 2 + 2 \# 1.4 + 0.7 \# \frac{22}{7} \# 2$ $+ 0.35 \# 2$ M1 M1 M2 M2 M1 M3 M3 M4 M1 M2 M1 M2 M1 M3 M3 M4 M1 M2 M1 M2 M2 M3 M3 M4 M3 M4 M4 M4 M5 M6 M1 M1 M1 M2 M2 M3 M4 M3 M4 M4 M4 M4 M5 M6 M1 M1 M2 M1 M2 M2 M3 M3 M4 M4 M4 M4 M5 M6 M1 M1 M2 M2 M3 M3 M4 M4 M4 M4 M5 M1 M1 M2 M3 M3 M4 M4 M4 M4 M4 M5 M6 M6 M1 M1 M2 M3 M3 M4 M4 M4 M1 M3 M4 M4 M4 M4 M5 M6 M1 M1 M1 M2 M2 M3 M3 M3 M4 M4 M3 M4 M4 M4 M4 M4 M5 M6 M8 M8 M8 M8 M9 M1 M2 M3 M3 M4 M4 M4 M4 M5 M5 M6 M8 M8 M8 M8 M9 M1 M2 M3 M3 M4 M4 M4 M5 M5 M6 M8 M8 M8 M8 M9 M9 M1 M2 M3 M4 M4 M4 M5 M5 M8 M8 M8 M8 M8 M9 $M9$		\therefore A.S.F = 1.5 ² = 2.25	B1	
16. $r^{2} \# \frac{22}{7} \# \frac{45}{360} = 77$ $r = \sqrt{\frac{77 \# 360 \# 7}{45 \# 22}}$ $= 14$ Circumference = $2 \# 14 \# \frac{22}{7}$ $= 88 \text{ cm}$ M1 17. (a) (i) Volume of prism = Area of crosssection # L $= ; 1.4 \# 0.8 - \frac{1}{2} \# \frac{22}{7} \# ^{0.7} \text{ hg} \# 2$ $= 0.35 \# 2$ $= 0.8 \# 2 \# 2 + 2 \# 1.4 + 0.7 \# \frac{22}{7} \# 2$ $+ 0.35 \# 2$ M1 M1 Multiplication by length M1 rectangular triangular		Area of smaller triangle = $\frac{22.5}{2.25}$	M1	
16. $ r^{2} \# \frac{22}{7} \# \frac{45}{360} = 77 $ $ r = \sqrt{\frac{77 \# 360 \# 7}{45 \# 22}} $ $ = 14 $ $ \text{Circumference} = 2 \# 14 \# \frac{22}{7} $ $ = 88 \text{ cm} $ $ 17. (a) (i) \text{ Volume of prism} = \text{Area of cross section} \# L $ $ = ; 1.4 \# 0.8 - \frac{1}{2} \# \frac{22}{7} \# ^{\circ} 0.7 \text{ ft} \# 2 $ $ = 0.35 \# 2 $ $ = 0.7 \text{ m}^{3} $ $ \text{(ii) Total S.A} $ $ = 0.8 \# 2 \# 2 + 2 \# 1.4 + 0.7 \# \frac{22}{7} \# 2 $ $ + 0.35 \# 2 $ $ \text{M1} $ $ \text{M2} $ $ \text{M3} $ $ \text{M4} $ $ \text{M2} $ $ \text{M1} $ $ \text{M3} $ $ \text{M3} $ $ \text{M4} $ $ \text{M3} $ $ \text{M4} $ $ \text{M1} $ $ \text{M3} $ $ \text{M1} $ $ \text{M2} $ $ \text{M3} $ $ \text{M3} $ $ \text{M4} $ $ \text{M4} $ $ \text{M4} $ $ \text{M5} $ $ \text{M1} $ $ \text{M6} $ $ \text{M1} $ $ \text{M1} $ $ \text{M1} $ $ \text{M2} $ $ \text{M2} $ $ \text{M3} $ $ \text{M3} $ $ \text{M4} $ $ \text{M4} $ $ \text{M4} $ $ \text{M5} $ $ \text{M1} $ $ \text{M1} $ $ \text{M2} $ $ \text{M2} $ $ \text{M3} $ $ \text{M4} $ $ \text{M4} $ $ \text{M4} $ $ \text{M5} $ $ \text{M1} $ $ \text{M1} $ $ \text{M2} $ $ \text{M2} $ $ \text{M3} $ $ \text{M4} $ $ \text{M3} $ $ \text{M4} $ $ \text{M3} $ $ \text{M4} $ $ \text{M4} $ $ \text{M4} $ $ \text{M5} $ $ \text{M6} $ $ \text{M1} $ $ \text{M1} $ $ \text{M2} $ $ \text{M2} $ $ \text{M3} $ $ \text{M3} $ $ \text{M4} $ $ \text{M4} $ $ \text{M3} $ $ \text{M4} $ $ \text{M4} $ $ \text{M3} $ $ \text{M4} $ $ \text{M5} $ $ \text{M6} $ $ \text{M1} $ $ \text{M1} $ $ \text{M2} $ $ \text{M3} $ $ \text{M3} $ $ \text{M4} $ $ \text{M4} $ $ \text{M3} $ $ \text{M4} $ $ \text{M5} $ $ \text{M6} $ $ \text{M8} $ $ \text{M8} $ $ \text{M9} $ $ \text{M1} $ $ \text{M2} $ $ \text{M3} $ $ \text{M3} $ $ \text{M4} $ $ \text{M4} $ $ \text{M4} $ $ \text{M5} $ $ \text{M5} $ $ \text{M6} $ $ \text{M8} $ $ \text{M8} $ $ \text{M9} $ $ \text{M1} $ $ \text{M2} $ $ \text{M3} $ $ \text{M3} $ $ \text{M4} $ $ \text{M2} $ $ \text{M3} $ $ \text{M4} $ $ \text{M4} $ $ \text{M5} $ $ \text{M5} $ $ \text{M6} $ $ \text{M8} $ $ \text{M8} $ $ \text{M9} $ $ \text{M1} $ $ \text{M2} $ $ \text{M3} $ $ \text{M3} $ $ \text{M4} $ $ \text{M4} $ $ \text{M5} $ $ \text{M8} $ $ \text{M8} $ $ \text{M8} $ $ \text{M9} $		$= 10 \text{ cm}^2$		
			3	
$= 14$ Circumference = 2 # 14# $\frac{22}{7}$ = 88 cm $= 17. (a) (i) \text{ Volume of prism} = \text{Area of cross section } \# L$ $= ; 1.4 \# 0.8 - \frac{1}{2} \# \frac{22}{7} \# ^{0.7} \text{ he} \# 2$ $= 0.35 \# 2$ $= 0.7 \text{ m}^{3}$ (ii) Total S.A $= 0.8 \# 2 \# 2 + 2 \# 1.4 + 0.7 \# \frac{22}{7} \# 2$ $+ 0.35 \# 2$ M1 rectangular triangular	16.	$r^2 \# \frac{22}{7} \# \frac{45}{360} = 77$		
Circumference = $2 \# 14 \# \frac{22}{7}$ M1 = 88 cm M1 17. (a) (i) Volume of prism = Area of crosssection # L = $; 1.4 \# 0.8 - \frac{1}{2} \# \frac{22}{7} \# 0.7 \text{ hg} \# 2$ M1 = $0.35 \# 2$ M1 Multiplication by length = 0.7 m^3 A1 (ii) Total S.A = $0.8 \# 2 \# 2 + 2 \# 1.4 + 0.7 \# \frac{22}{7} \# 2$ M1 rectangular triangular		$r = \sqrt{\frac{77 \# 360 \# 7}{45 \# 22}}$	M1	
$= 88 \text{ cm}$ $= 88 \text{ cm}$ 17. (a) (i) Volume of prism = Area of crosssection # L $= ; 1.4 \# 0.8 - \frac{1}{2} \# \frac{22}{7} \# 0.7 \text{ fr} \# 2$ $= 0.35 \# 2$ $= 0.7 \text{ m}^3$ (ii) Total S.A $= 0.8 \# 2 \# 2 + 2 \# 1.4 + 0.7 \# \frac{22}{7} \# 2$ $+ 0.35 \# 2$ M1 Multiplication by length M1 rectangular triangular	-	= 14	A1	
17. (a) (i) Volume of prism = Area of crosssection # L $= ; 1.4 \# 0.8 - \frac{1}{2} \# \frac{22}{7} \# ^{0}0.7 \text{ hg} \# 2$ $= 0.35 \# 2$ $= 0.7 \text{ m}^{3}$ (ii) Total S.A $= 0.8 \# 2 \# 2 + 2 \# 1.4 + 0.7 \# \frac{22}{7} \# 2$ $+ 0.35 \# 2$ M1 Multiplication by length M1 rectangular triangular		Circumference = $2 \# 14 \# \frac{22}{7}$	M1	
17. (a) (i) Volume of prism = Area of crosssection # L $= ; 1.4 \# 0.8 - \frac{1}{2} \# \frac{22}{7} \# ^{\circ}0.7 \text{ ft} \# 2$ $= 0.35 \# 2$ $= 0.7 \text{ m}^{3}$ (ii) Total S.A $= 0.8 \# 2 \# 2 + 2 \# 1.4 + 0.7 \# \frac{22}{7} \# 2$ $+ 0.35 \# 2$ M1 Multiplication by length M1 rectangular triangular		= 88 cm	-	
$= ; 1.4 \# 0.8 - \frac{1}{2} \# \frac{22}{7} \# ^{\circ}0.7 \text{ fr} \# 2$ $= 0.35 \# 2$ $= 0.7 \text{ m}^{3}$ (ii) Total S.A $= 0.8 \# 2 \# 2 + 2 \# 1.4 + 0.7 \# \frac{22}{7} \# 2$ $+ 0.35 \# 2$ M1 Multiplication by length M1 rectangular triangular			4	
$= 0.35 \# 2$ $= 0.7 \text{ m}^{3}$ (ii) Total S.A $= 0.8 \# 2 \# 2 + 2 \# 1.4 + 0.7 \# \frac{22}{7} \# 2$ $+ 0.35 \# 2$ M1 Multiplication by length M1 Multiplication by length M1 rectangular triangular	17.	(a) (i) Volume of prism = Area of crosssection # L		
$= 0.7 \text{ m}^{3}$ (ii) Total S.A $= 0.8 \# 2 \# 2 + 2 \# 1.4 + 0.7 \# \frac{22}{7} \# 2$ $+ 0.35 \# 2$ M1 M1 rectangular triangular		= ; 1.4 # 0.8 - $\frac{1}{2}$ # $\frac{22}{7}$ # $^{\circ}$ 0.7 h# 2		
(ii) Total S.A = $0.8 \# 2 \# 2 + 2 \# 1.4 + 0.7 \# \frac{22}{7} \# 2$ + $0.35 \# 2$ M1 rectangular triangular		= 0.35 # 2	M1	Multiplication by length
= 0.8 # 2# 2 + 2 # 1.4 + 0.7 # $\frac{22}{7}$ # 2 + 0.35 # 2 M1 rectangular triangular		$= 0.7 \text{ m}^3$	A1	
+ 0.35 # 2 M1 triangular		(ii) Total S.A		
+ 0.35 # 2		$= 0.8 # 2# 2 + 2 # 1.4 + 0.7 # \frac{22}{7}# 2$	M1	
= 6 + 4.4 + 0.7 M1 cross section		+ 0.35 # 2	MII	triangular
eross section		= 6+ 4.4+ 0.7	M1	cross section
$= 11.1 \mathrm{m}^2$ A1		$= 11.1 \text{m}^2$	A1	
(b) = $\frac{6 \# 100}{6 + 4.4 + 2^{0.35} h}$ M1			M1	
= 54.05405405 %		= 54.05405405 %		
= 54.1%		= 54.1%	A1	
10			10	

18.

(a)

B1 plotting vertices A, B and C. **B**1 identifying vertex D (-3, 5) and

competing parallelogram.

M1

A1

(ii) $\frac{y-3}{x-7} = -\frac{1}{2}$ or $\frac{y-1}{x-1} = -\frac{1}{2}$

$$y = -\frac{1}{2}x - \frac{7}{2} + 3 \text{ or } y = -\frac{1}{2}x + \frac{1}{2} - 1$$

$$y = -\frac{1}{2}x - \frac{1}{2}$$

(b) (i) grad AB = $\frac{3--1}{-7-1}$

M1

A1

(c) (i) Let grad L be m

$$\therefore$$
 $\frac{1}{2}$ m= -1 (m= 2

equation of line $\frac{y-3}{x-1} = 2$

y- 2x= 1

B1

M1

(ii) y - intercept: when x = 0

y = 2 # 0 + 1 = 1

∴ co-ordinates 10,1 h

A1

B1

10

19.	(a) $\left(x - \frac{1}{2}\right)(x+1) = 0$	B1 or equivalent
	$x^2 + x - \frac{1}{2}x - \frac{1}{2} = 0$	M1
	$x^2 + \frac{1}{2}x - \frac{1}{2} = 0$	
	$2x^2 + x - 1 = 0$	A1
	(b) (i) $(2y+1)(y) = 55$	B1
	(2y+11)(y-5)=0	M1
	$y = -5\frac{1}{2}$ or $y = 5$	A1 .
	∴ price of one mango Sh 5	B1
	(ii) no. of mangoes Karau got	
	mangoes bought = $\frac{95 + 55}{5} = 30$	M1
	$\therefore \text{ extra mangoes} = \frac{30}{6} = 5$	A1
	Total mangoes = $30 + 5 = 35$	B1 10

21.	(a) $+ ROP = 2 # 64^{\circ} = 128^{\circ}$	B1	
	angle subtended at centre is subtended at O circumference	_	allow other valid reasons
	(b) + PSR = 180° - 64° = 116 opposite angles of cyclic	° B1	
	quadrilateral add up to 180°.	B1	
	(c) + ORP = 90° - 64° = 26° angle in semicircle (+ QRP)	= 90°	
	and base angles of isosceles		
	(d) + TRP = 64°	B1	
	angle in alternate segment.	B1	A STATE OF THE STA
	(e) + RTP = 180 - 2.764 h= 52 + TRP = 64° angle in altern		
	sum of angles in triangle PR	_	edital – machinist (in
		10	

22.	(a) (i) $r = \sqrt{15^2 - 12^2}$	M1
	= 9	A1
	(ii) Volume of cone:	
	$=\frac{1}{3}$ r # 9# 9 # 12	M1
	= 1017.87602	
	- 1017.88	A1
	(b) (i) $\frac{h}{12} = \frac{6}{9}$	M1
	$h = \frac{12 \# 6}{9} = 8$	A1
	(ii) volume of smaller cone	
	$=\frac{1}{3}$ r # 6# 6# 8	M1
	= 301.5928947	
	- 301.59	A1
	(iii) Volume of frustum	
	1017.88 - 301.59	M1
	= 716.29	A1 10

= 112.5 + 325 + 500 + 625 = 1562.5(iii) Average speed $=\frac{1562.5}{60}$

 $= 26.0416 = 26.0 \, m/s$

or equivalent

A1

M1

A1

10

5.2.2 Mathematics Alternative B Paper 2 (122/2)

1.	$\frac{4.957}{0.2638 - 0.0149} = \frac{4.96}{0.263 - 0.015}$	B1	
	= 20	B1	
	- 20	2	
2.	$AB = \begin{pmatrix} 2 & 4 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}$		
	$= \begin{pmatrix} 8 & 10 \\ 6 & 9 \end{pmatrix}$	B1	
	$AB - 5B = \begin{pmatrix} 8 & 10 \\ 6 & 9 \end{pmatrix} - \begin{pmatrix} 10 & 15 \\ 5 & 5 \end{pmatrix}$	M1	√ Substraction and multiplication by 5
	$=\begin{pmatrix} -2 & -5 \\ 1 & 4 \end{pmatrix}$	A1	
	(1 4)	3	
3.	A: B: C A: B: C 4: 3 \implies 4: 3 1: 2 3: 6		
	combined ratio A:B:C = 4:3:6	В1	
	mass of type $C = \frac{6}{13} \times 52$	M1	
	= 24	A1	
		3	
4.	(a) $\frac{ar^5}{ar^3} = \frac{96}{24}$	M1	
	$r^2 = 4 \longrightarrow r = \pm 2$	A1	
	(b) when		
	$r = 2 \Longrightarrow a \times 2^3 = 24 \Longrightarrow a = \frac{24}{8} = 3$	B1	
	when		
	$r = -2 \implies a \times (-2)^3 = 24 \implies a = \frac{24}{-8} = -3$	B1	
	6	4	

-	1			_					
5.	(a)								
	+	1	2	3	4	5	6		
	1	2	3	4	5	6	7		
	2	3	4	5	6	7	8		
	3	4	5	6	7	8	9		
	4	5	6	7	8	9	10		
	5	7	7 8	8	9	10	11	B2	√ probability space
		/	8	9	10	11	12	52	y probability space
	(b) $P(6 <$	x < 1	10)						
	$=\frac{15}{36}$	$=\frac{5}{12}$						D1	
	30	12						B1 3	
6.	(a)								
	OB =	$\binom{2}{5}$ +	$\binom{4}{4}$					M1	
			(1)						
	$=\binom{6}{9}$				A1				
	(b) co-ordin	nates c	of M						
	OM = 0	ŌA +	$\frac{3}{4}AB$						
	$=\binom{2}{5}$	$+\frac{3}{4}(^{4}$	4)		M1				
		• .							
	$=\binom{2}{5}$	$+\binom{3}{3}$	$=\binom{5}{8}$						
	∴ coor	rdinate	s of M	I are (5	A1				
								4	
7.	Let angle A: $3x + 7$								
		x = 1	35°		B1				
	angle BAP = angle BPR = $2 \times 35^{\circ}$								
				= 70°				B1 2	
8.	$2\cos(x-3)$	0)°=	- 0.9			- 45			
	$\cos(x-30$	0)°=-	- 0.45		M1				
	(x-30)		cos ⁻¹ -					A1	
			146.74					B1	
							200	3	•

	0728 450 425 anchir		
1 1	$\binom{0}{1}\binom{1}{0}\binom{-1}{0}-1$	M1	
	$= \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$		
	$\binom{0}{-1}\binom{1}{0}\binom{1}{3}\binom{1}{7}\binom{1}{4}$	M1	
	$= \begin{pmatrix} -3 & -7 & -4 \\ -1 & -1 & 1 \end{pmatrix}$		
	: coordinates: $R'(-3, -1)$, $S'(-7, -1)$ and $T'(-4, 1)$	A1 3	
10.	$2x^2 + 8x = 15$	-	de ne se des mil 1
	$\begin{vmatrix} x^2 + 4x = 7.5 \\ x^2 + 4x + \left(\frac{4}{2}\right)^2 = 7.5 + \left(\frac{4}{2}\right)^2 \end{vmatrix}$	M1	
	$x + 2 = \sqrt{11.5}$	M1	
	$= \pm 3.4$		
	= 1.4 or -5.4	A1	
		3	·
A A	radius = 2.4 ± 0.1	B1 B1	bisecting 2 or 3 angles constructing radius and completing circle
		3	

12.	Fraction of food per person per day $\frac{1}{2000 \times 90}$		
	Fraction for 2000 persons for 20 days		
	$=2000 \times \frac{20}{2000 \times 90}$	M1	
	2000×90		
	$=\frac{2}{9}$	A1	
	9	***	
	Remaining fraction of food = $\frac{7}{9}$		
	No of days to feed 2000 + 500 persons		H 111 1 12 2 1
	$=\frac{7}{9} \div \frac{1 \times 2500}{180000}$	M1	
	, 100000		
	$\frac{7}{9} \times \frac{72}{1} = 56$	A1	
	9 1	4	nari I Languaga
13.	$\cos P = \frac{75^2 + 80^2 - 40^2}{2 \times 75 \times 80}$	M1	
	$=\frac{10425}{12000}=0.86875$		
	$P \simeq 30^{\circ}$		
	$\frac{SR}{\sin 68} = \frac{40}{\sin 30} \Longrightarrow SR = \frac{40\sin 68}{\sin 30^{\circ}}$) / (1	
	$\sin 68 = \sin 30 \implies \sin 30^{\circ}$	M1	
	= 74 m	A1	
	Vice * Support setting of the Land	3	
14.	15t handlest 10164 × 10 - 10164		
	$1^{\text{st}} \text{ bracket} \longrightarrow 10164 \times \frac{10}{100} = 1016.4$	M1	
	$2^{\text{nd}} \text{ bracket} \longrightarrow (19740 - 10164) \times \frac{15}{100} = 1436.4$		
	2 blacket = (15/40 10104) \(\times \) 100 = 1430.4	M1	
	3^{rd} bracket $\rightarrow (21820 - 19740) \times \frac{20}{100} = 416$	1411	
	100 J		
	Net tax = $(1016.4 + 1436.4 + 416) - 1162$	M1	
	_ 1706.9		
	= 1706.8	A1	- × 1 =
1.		4	
15.	2p + 3r = 66(i)	M	
	7p + 2r = 129(ii)	M1	
	4p + 6r = 132(iii)		
	$\frac{21p + 6r = 317(iv)}{255}$	M	
	17p = 255	M1	
	p = 15	A1	
		3	

17.	(a) 300000 × 0.18	M1	
	= 54000	, A1	
	(b) (i) 300000 + 54000 - 134000 = 220000	M1 A1	
	(ii) 220000 × 1.18 - 134000 = 125600	M1 A1	
	(c) 125600×1.18 = 148208	M1 A1	
	(d) Total interest charged: $(300000 + 22000 + 125600) \times 0.18$ = 54000 + 39600 + 22608 = 116208	M1 A1 10	or equivalent 134000 × 2 + 148208 - 300000 = 116208
18.	(a) (i) $U_{10} = 10^2 - 10 + 3$	M1	
10.	= 93	A1	
	(ii) $U_{30} - U_{20} = (30^2 - 30 + 3) - (20^2 - 20 + 3)$ = 873 - 383 = 490	M1 A1	
	(iii) $n^2 - n + 3 = 243$ $n^2 - n - 240 = 0$ (n+15)(n-16) = 0 n = -15 or $n = 16n = 16$	M1 M1	
	(b) (i) Number after ℓ hours $= 180 \times 3^{\ell}$	B1	
	(ii) Number to the nearest million after 20 hours 180×3^{12} = 95659380	M1	
	= 96000000	A1	
		10	

19. (a) Modal class: 4 - 5	B1	
(b) $\frac{8}{36} \times 360^{\circ}$	M1	
= 80°	A1	
(c) mid values 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5	M1	
$fx = 1, 6, 7.5, 17.5, 36, 33, 32.5, 22.5$ $\sum fx = 1 + 6 + 7.5 + 17.5 + 36 + 33 + 32.5 + 22.5$	M1	
$\therefore \text{ mean} = \frac{156}{36}$	M1	
$=4\frac{1}{3}$	A1	
(d)		
7		
4		
5		
4		
	S1 √ scale and labelling	
2	l pa	
	8 bars $\sqrt{\text{(allow B1 for 5 - 7 bars }\sqrt{)}}$	
	10	

). (a)	
x -1 0 1 2 3 4 y -12 -3 2 3 0 -7	B2
	1-73 miles of the first of the
(b)	
57	
1 0 /-1 - 2 3	42
/3	
70	
-6	
	S1
	P1
	C1
(c) (i) Roots of equation $x = 0.5$	B1
or $x = 3$	B1
	B1
(ii) tangent line $\sqrt{\text{drawn}}$ gradient: $\frac{5-1}{2-0}$	M1
	A1
= 3	10

21.	(a) (i) $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = 3i + 5j - (-2i + j)$ = $3i + 5j + 2i - j$	M1
	= 5i + 3j + 2i - j $= 5i + 4j$	A1
	(ii) $\overrightarrow{CD} = \overrightarrow{OD} - \overrightarrow{OC} = 2i - 4j - (-8i - 12j)$ = $2i - 4j + 8i + 12j$	M1
	= 2i - 4j + 8i + 12j $= 10i + 8j$	A1
	(b) mid point of vector AD $= \frac{1}{2} \left\{ \begin{pmatrix} -2i \\ j \end{pmatrix} + \begin{pmatrix} 2i \\ -4j \end{pmatrix} \right\} = \frac{1}{2} \begin{pmatrix} 0 \\ -3j \end{pmatrix}$	M1
	$= \begin{pmatrix} 0 \\ -1.5j \end{pmatrix}$	A1
	∴ coordinates of mid point is (0, -1.5)	B1
	(c) $BC = OC - OB = -8i - 12j - (3i + 5j)$ = 11i - 17j $\therefore BC = \sqrt{11^2 + 17^2}$	M1
	$ BC = \sqrt{11^2 + 17^2}$ $= \sqrt{121 + 289} \approx 20.2$	M1
ľ	V 323 / 205 = 20.2	A1
		10
22.	(a) (i) Longitude difference = 12° + 60°	M1
	$= 72^{\circ}$ Distance PR = $\frac{72}{360} \times 2 \times \frac{22}{7} \times 6370$	M1
	= 8008 km	A1
	(ii) Time difference = $\frac{72}{15}$ h	M1
	= 4 h 48 min	
	Local time at Q: = 9.00 pm - 4 h 48 min = 4.13 pm	M1 A1
	(b) Distance travelled in 2 h = $1001 \times 2 = 2002 \text{ km}$ $\therefore \frac{\theta}{360} \times 2 \times \frac{22}{7} \times 6370 = 2002$	B1 M1
	$\theta = \frac{2002 \times 360 \times 7}{2 \times 22 \times 6370}$	
	= 18° Position of T: (18°N, 60°W)	A1 B1
		10

23.	(a) (i) $R \propto \frac{C^2}{T} \Longrightarrow R = \frac{kC^2}{T}$	B1 .
	R = 30, C = 6 and $T = 2.4$	
	$\Rightarrow 30 = \frac{k6^2}{2.4}$	M1
	$k = \frac{30 \times 2.4}{36} = 2$	A1
	$(ii) :: R = \frac{2C^2}{T}$	B1 .
	(b) (i) when $R = 40$ and $C = 8$	
	$T = \frac{2 \times 8^2}{40}$	M1
	= 3.2	A1
	(ii) New $R = \frac{2 \times (0.9 \times 8)^2}{1.08 \times 3.2}$	M1
	= 30	A1
	% change in D	
	% change in R = $\frac{40 - 30}{40} \times 100$	M1
	= 25%	A1
		10

24. 9		
(a) (i) $24 + \frac{1}{2}(13) = 30\frac{1}{2}$	M1 A1	whole square and part square
(ii) $\frac{1}{2} \times 1\{2 + 2 + 2(6 + 8 + 8 + 6)\}$	B1	ordinates 2, 6, 8, 8, 6, 2 substitution into formula
$=\frac{1}{2}(60)$	M1	simplification
$= 30 \text{ cm}^2$	A1	
(b) (i) % error = $\frac{30\frac{5}{6} - 30}{30\frac{5}{6}} \times 100$	M1	
$=2\frac{26}{37}$		
= 2.7	A 1	
(ii) $1 \text{ cm} \equiv 120 \text{ m}$ $1 \text{ cm}^2 \equiv 14400 \text{ m}^2$	B1	
$\therefore 30\frac{5}{6} \text{ cm}^2 \equiv \frac{144000}{10000} \times \frac{185}{6}$	M1	
=44.4 ha	A1 10	

