

UNIVERSITY EXAMINATION 2015/2016

SCHOOL OF PURE AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTURIAL SCIENCE

BED (SCIENCE), BED (ARTS) AND BSNE SCHOOL BASED

UNIT CODE: BMA2102

UNIT TITLE: PROBABILITY & STATISTICS II

DATE: DECEMBER 2015

MAIN EXAM

TIME: 2 HOURS

Instructions: Answer question one and any other two

SECTION A (30 MARKS)

1.

a. Explain the following terms

i.	Event	(3 marks)
ii.	Discrete variable	(3 marks)
iii.	Continuous variable	(3 marks)
iv.	Pdf	(3 marks)
v.	Random variable	(3 marks)

- b. A coin is tossed three times. If X is a random variable showing the number of heads that come up, construct a probability distribution of X. (6 marks)
- c. Obtain the probability function from the distribution function

X	1	2	3	4
f(x)	1/8	3/8	3/4	1

Hence determine;

i. $P(1 \le x \le 3)$

(3 marks)

ii. $P(x \ge 2)$

(3 marks)

iii. P(x < 3)

(3 marks)

SECTION B (20 MARKS)

2.

a. A random variable X has the density function $f(x) = \frac{c}{x^2+1}$, where $-\infty < x < 0$

i. Find the value of the constant

(4 marks)

ii. Find the probability that x^2 lies between 1/3 and 1.

(6 marks)

b. Give the relationship between Poisson and Binomial distributions

(10 marks)

- 3. Prove that the moment generation function results in a Taylor series function (20 marks)
- 4. Find the expectation of a discrete random variable X whose probability function is given by $f(x) = \begin{cases} \frac{1}{2} \\ 0, \text{ otherwise} \end{cases}$, x = 1, 2, 3.

Find;

a. The variance

(10 marks)

b. The standard deviation of the sum obtained in tossing a pair of fair dice

(10 marks)

₩ 5.

a. Given $f(x) = \begin{cases} \frac{1}{4} \\ 0, otherwise \end{cases}$, $-2 \ll x \ll 2$, find

i. Variance

(4 marks)

ii. Standard deviation

(6 marks)

a. A random variable X has density function given by $f(x) = \begin{cases} 2e^{-2x}, x \ge 0\\ 0, otherwise \end{cases}$

b. Find the moment generating function

(5 marks)

c. The first four moment about the origin

(5 marks)