UNIVERSITY EXAMINATIONS 2011

SCHOOL OF EDUCATION
DEPARTMENT OF CURRICULUM AND INSTRUCTION
BACHELOR OF EDUCATION (SCHOOL-BASED)
END OF SEMESTER EXAMINATION
EMA: 222 PROBABILITY AND STATISTICS 1

APRIL 2011 SERIES

TIME 2 HOURS

Instructions: Answer questions ONE (COMPULSORY) and any other TWO questions.

Question One (compulsory - 30 marks)

(a) The random variable X \sim \text{B}(150, 0.22), use a suitable approximation to estimate \(P(X \geq 7) \).

\(\text{[2 marks]} \)

(b) The random variable X is uniformly distributed over the interval \([-1, 3]\).

i. Sketch the probability density function \(f(x) \) of X.

\(\text{[1 mark]} \)

ii. Find \(E(X) \).

\(\text{[2 marks]} \)

iii. Find \(\text{Var}(X) \).

\(\text{[2 marks]} \)

iv. \(P(-0.3 < x < 3.3) \)

\(\text{[2 marks]} \)

(c) It is estimated that in a certain country 4% of people have green eyes. In a random sample of size \(n \), the expected number of people with green eyes is 5.

i. Calculate the value of \(n \).

\(\text{[2 marks]} \)

The expected number of people with green eyes in a second random sample is \(\frac{3}{2} \).

ii. Find the standard deviation of the number of people with green eyes in this second sample.

\(\text{[4 marks]} \)

d) The random variable \(Y \) has probability generating function \(M_Y(t) \) given by

\[M_Y(t) = \frac{1}{3} t^x \left(\frac{2}{3} + t \right) \left(\frac{1}{3} + t \right) \]

i. Find \(E(Y) \), when \(t = 1 \).

\(\text{[4 marks]} \)

The random variable \(X \) has a binomial distribution with \(n = 5 \) and \(p = \frac{1}{3} \).

ii. Show that the probability generating function of the random variable \(W = 5 - X \) is

\(\text{[3 marks]} \)

e) A random sample \(x_1, x_2, \ldots, x_{10} \) is taken from a normal population with mean 100 and standard deviation 14.

i. Write down the distribution of \(\bar{x} \), the mean of this sample.

\(\text{[2 marks]} \)

ii. Find \(P \left(\frac{X - 100}{14} > 5 \right) \).

\(\text{[2 marks]} \)
Question two (20 marks)

The total number of radio taxi calls received at a control centre in a month is modeled by a random variable \(X \) (in tens of thousands of calls) having the probability density function

\[
f(x) = \begin{cases}
2x, & 0 < x < 1 \\
2(2-x), & 1 \leq x < 2 \\
0, & \text{otherwise}
\end{cases}
\]

a) Show that the value of \(c \) is 1

b) Write down the probability that \(x \leq 1 \).

c) Show that the cumulative distribution function of \(X \) is

\[
F(x) = \begin{cases}
0, & x < 0 \\
\frac{1}{2}x^2, & 0 \leq x < 1 \\
2x - \frac{1}{2}x^2 - \frac{3}{2}, & 1 \leq x < 2 \\
1, & x \geq 2
\end{cases}
\]

d) Find the probability that the control centre receives between 8000 and 12000 calls in a month.

A colleague criticizes the model on the grounds that the number of radio calls must be discrete, while the model used for \(X \) is continuous.

e) State briefly whether you consider that it was reasonable to use this model for \(X \).

f) Give two reasons why the probability density function the diagram above must be unsuitable model.

g) Sketch the shape of a more suitable probability density function.

h) The random variable \(X \sim N(150, 10^2) \), use a suitable approximation to estimate \(P(X > 7) \).

\[
P(X > 7) = n(1-p)^{\frac{x-1}{p}}
\]

\[
= 160 \times 0.98^2 \approx 1.2 \times 10^2
\]

\[
\text{Var} = 3 \times (1 - 0.10^2)
\]

\[
= 2.98
\]