

KENYATTA UNIVERSITY

UNIVERSITY EXAMINATIONS 2011/2012

INSTITUTIONAL BASED PROGRAMME (IBP) AUGUST SESSION EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE AND FACHELOR OF EDUCATION

SMA 103: AN LYTIC GEOMETRY

DATE:

Wednesday, 28th December 2011

TIME: 8.00 a.m. - 10.00 a.m.

INSTRUCTIONS:

Answer question ONE and any other TWO questions.

1. (a) Find the angle between two lines whose equations are x + 2y = 4 and 4x - y = 2

(4 marks)

- (b) Find the distance of the line 3x + 4y 3 = 0 from the point (4,5) (2 marks)
- (c) Find the equation of a circle with centre at (1, -2) and passes through (4, -3)

(4 marks)

- (d) Express the equation $x^2 + y^2 = 7 6y$ in polar coordinates. (4 marks)
- (e) Show that the line segments joining (-3, 11), (2, -1) and (14, 4) form a right triangle. (4 marks)
- (f) Find the vertex, focus and equation of a directrix of a parabola whose equation is $2x^2 x y = 1$ (4 marks)
- (g) Find the equation of the hyperbola with a asymptotes x y = -1 and x + y = -3 and vertex (3, -1).
- (h) Find the equation of the ellips with vertices at (1,5) and 1,-1), and loci at (1,4) and (1,0)

- 2. (a) Find the locus of a point P(x, y) which moves so that its distance from (2, 4) is twice its distance from (0, 0). Describe the locus
 - (b) The points $A(x_1, y_1)$ and $B(x_2, y_2)$ are the ends of a diameter of a circle. Find the equation of the circle. (4 marks)
 - (c) Show that the circles $x^2 + y^2 2ax + C^2 = 0$, $x^2 + y^2 2by c^2 = 0$ are orthogonal. (6 marks)
 - (d) Find the length of the tangent from the point (1, 1) to the circle $x^2 + y^2 4x 6y + 12 = 0$. (3 marks)
- 3. (a) Find the equation of a parabole with vertex (-2, -4) and directrix x = 3 (6 marks)
 - (b) Given the equation of a parabola is $8y = 12 4x + x^2$, determine the coordinates of the vertex, focus and equation of the directrix. Hence sketch its graph.

 (8 marks)
 - (c) Find the rectangular equation of the "rose" $Y = 4 \sin 2\theta$ (6 marks)
- 4. (a) By use of definition of the hyperbola, find the equation of the hyperbola with foci at (1, 2) and (11, 2) with a transverse axis of 8. (7 marks)
 - (b) Write the following equation in standard form $5x^2 4y^2 + 20x + 8y = 4$. Hence identify and sketch the curve. (7 marks)
 - (c) Analyse the following equation $9x^2 90x + 25y^2 150y + 225 = 0$ (6 marks)

The tangent to the circle $x^2 + y^2 - 4x - 6y - 7 = 0$ at (4,1) meets the x-exis at A and the y-axis at B. Find the area of the triangle OAB, where O is the origin.

[4 marks]

Question 4720 mortis)

(a) (i) / Define a parabola

[2 marks]

(ii) With the help of a sketch derive the general equation of a parabola that R = KM opens to the left with focus (-c, 0) and the vertex at the brigin families

(iii) V Find the equation of the parabola whose vertex is at (4,1)

and the directrix is x = 2, hence sketch it.

[4 marks]

Analyse the curve

 $2x^{2} + 5y - 3x + 4 = 0$ by finding

- (i) Vertex
- (ii) Focus
- (iii) Directrix
- (iv) Axis of symmetry
- (v) Latus rectum 349 5 LR

Sketch the curve and show the above feetures. [10 n

Question 5 (20 marks)

(a) Anal

Analyse the hyperbola

$$4x^2 - 5y^2 - 16x + 10y + 31 = 0.$$

Sketch its graph indicating clearly the centre, vertices, foci and asymptotes.

[8 marks]

Determine the equation of the hyperbola with its centre at the point (2,3), transverse axis on the line x=2, eccentricity $(2\sqrt{3})^{\frac{1}{2}}$ and length of latus rectum 18.

[7 marks]

OUESTION 2 (20 MARKS)

- a) Derive the equation of the Locus of a point P(x, y) which moves so that the product of the gradients of the straight lines joining P to the points (-2, 1) and (4, 5) is 3. By completing the squares in the variables involved, identify the curve as either a parabola, ellipse or hyperbola. (7 marks)
- A parabola whose axis is vertical passes through the points (-19, 27) (17, 9) and (-1, $\frac{9}{2}$). If the vertex of the parabola lies on the line 3x y 15 = 0, find its equation in standard form. (7 marks)
- c) The lines x + 3y + 11 = 0 and 2x y 3 = 0 are diameters of a circle. If the circle passes through (-4, 1), find its equation in standard form. (4 marks)

QUESTION 3 (20 MARKS)

- a) An ellipse has equation $9x^2 + 25y^2 + 7(x 100y + 19 = 0)$. Determine the standard form of the ellipse and hence find its centrer, foci, vertices, directrix, eccentricity and length of the latus rectum.
- b) The end points of the major and minor axes of an ellipse are (7, 7), (10, -3), (7, 1) and (4, -3). Find the equation of the ellipse in standard form. (4 marks)
- Find the shortest distance between the circles $x^2 + y^2 8x + 6y = 0 \text{ and } x^2 + y^2 + 16x 4y + 59 = 0.$ (6 marks)

QUESTION 4 (20 MARKS)

a) One focus of a hyperbola is at (1, -3) and the corresponding directrix is the line y = 2. If the eccentricity $e = \frac{3}{2}$, determine the equation in standard form.

(10 marks)

b) Determine the center, vertices, foci, eccentricity asymptotes, directrix and length of the latus rectum for the hyperbola. $16x^2 - 9y^2 + 32x + 72y + 16 = 0$.

(10 marks)

The tangent to the circle $x^2 + y^2 - 4x - 6y - 7 = 0$ at (4,1) meets the x-axis at A and the y-axis at B. Find the area of the triangle OAB, where O is the origin.

[4 marks]

Define a parabola

[2 marks]

With the help of a sketch derive the general equation of a parabola that RE KM opens to the left with focus (-c, 0) and the vertex at the brigin A ominks

(iii) V Find the equation of the parabola whose vertex is at (4,1)

and the directrix is x = 2, hence sketch it.

[4 marks]

Analyse the curve

 $2x^{2} + 5y - 3x + 4 = 0$ by finding

- (i) Vertex
- (ii) Focus
- Directrix (iii)
- Axis of symmetry (iv)
- Latus rectum 349 = LR Sketch the curve and show the above features.

Question 5 (20 marks)

Analyse the hyperbola

 $4x^2 - 5y^2 - 16x + 10y + 31 = 0.$

Sketch its graph indicating clearly the centre, vertices, foci and asymptotes.

[8 marks]

Determine the equation of the hyperbola with its centre at the point (2,3), transverse axis on the line x=2, eccentricity $(2\sqrt{3})^{\frac{1}{2}}$ and length of latus rectum 18.

[7 marks]