SUSSION, FILE TAKE AWAT HOME

Mount Kenya

University

5th Session Bachelors' of BEDA AND BEDSC

UNIT NAME: ODINARY DIFFERENTIAL EQUATIONS

C.A.T 2.

UNIT CODE: BMA 2108

DATE: 17th /Dec/2015

ATTEMPT ALL QUESTIONS:

- a) Find the general solution of the given function $d^2y/dx^2 + 6\frac{dy}{dx} + 13y = 2x + 40 \sin x$
- b) A capacitor C is charged by applying a steady voltage E through a resistance R. The p.d. between the plates, V, is given by the differential equation:

$$CR\frac{dv}{dt} + v = E$$

- (i) Solve the equation for E given that when time t = 0, V = 0.
- (ii) Evaluate voltage V when E=50 V, C=10 μ F, R=200 k Ω and t=1.2 s.
- c) Use the substitution y = vx to solve the equation $x(x-y)\frac{dv}{dx} + y^2 = 0$
- d) Solve the Bernoulli equation

$$2x\frac{dy}{dx}$$
+ y = $2x^2(x + 1)y^3$ given that y = 1 when x = 1

- e) The non- exact equation $(-3x-1-2y^4)dx + (-3y-1+xy^3)dy = 0$ has an integrating factor of the form $u(x,y) = x^ry^s$. Find r and s and solve the equation.
- f) find power series solution by Taylor's series expansion method $(x-1) d^2y/dx^2 (3x-2) dy/dx + 2xy = 0$

ALSO READ ABOUT POWER SERIES

To be submitted first Saturday of April Session