

#### **UNIVERSITY EXAMINATION 2014/2015**

# SCHOOL OF PURE AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

### BEDSC, BEDA, BAS REGULAR

UNIT CODE: BMA3107

UNIT TITLE: REAL ANALYSIS

DATE: AUGUST 2015

MAIN EXAM

TIME: 2 HOURS

Instructions: Answer Question ONE and ANY other TWO

### QUESTION ONE (COMPULSORY) (30 MARKS)

a) Show that if  $x \neq 0$ , then  $x^{-1} \neq 0$  and  $x^{-1}$  is unique.

(3mks)

b) For every  $x \neq 0$ , show that  $x^2 > 0$ , hence show that 1 > 0.

(3mks)

- c) Let (S, <) be an ordered set and E a subset of S, if the least upper bound of E (lub. E) and the greatest lower bound of E (glb. E) exist. Show that lub. E and glb. E are unique. (6mks)
- d) Show that  $\sqrt{2}$  is an irrational number.

(4mks)

e) State the completeness axiom for IR

(2mks)

f) Let A be a nonvoid subset of IR which is bounded above. Define a set B by  $B = \{-x; x \in A\}$ , show that B is bounded below and -sup.A=inf.B. (4mks)

g) If a and b are given real numbers such that for every real number

 $\varepsilon > 0$ ,  $a \le b + \varepsilon$ , show that  $a \le b$ 

(5mks)

h) What is an inductive set?

(2mks)

## QUESTION TWO (20 MARKS)

- a) For any subset E of a metric space  $(X, \rho)$ , prove that  $E^0$  is an open set. (6mks)
- b) Consider the metric space (IR,d) and let  $f:IR \to IR$  be defined by f(x) = |x|. Show that f is uniformly continuous. (6mks)
- c) Show that the limit of a convergent sequence is unique in a metric space (8mks)

## QUESTION THREE (20 MARKS)

- a) Let A and B be nonvoid subsets of IR and define the set  $A+B=\{x+y;x\in A,y\in B\}$ , show that
  - i. If A and B are bounded above, then so is A+B and sup(A+B)=sup.A+sup.B (5mks)
  - ii. If A and B are bounded below, then so is A+B and inf.(A+B)=inf.A+inf.

    B (5mks)
- b) For every real numbers x and a, a>0, show that  $|x| \le a$  iff  $x \in [-a,a]$  (4mks)
- c) Let A, B, C be nonvoid sets and  $f:A\to B$  and  $g:B\to C$  be bijections. Then the composition  $g_0f$  and  $(g_0f)^{-1}=f^{-1}_0g^{-1}$ . (6mks)

### QUESTION FOUR(20 MARKS)

a) Show that every infinite set E contains a countable subset A. (7mks)

r civing

b) Differentiate between an algebraic and a transcendental number giving examples in each case (3mks)

c) Does the equation  $x^2 + 1 = 0$  have a solution in IR? Show your working. (4mks)

d) Define the following terms;

i. A metric space (4mks)

ii. An interior point of E (2mks)

## **QUESTION FIVE (20 MARKS)**

a) State and provide a proof of Cauchy -Schwarz inequality. (10mks)

b) Suppose that an open interval (0,1) is equivalent to IR. Show that IR is uncountable  $(10 \, \text{mks})$