Mount Kenya

5th Session Bachelors' of BEDA AND BEDSC

UNIT NAME: ODINARY DIFFERENTIAL EQUATIONS

UNIT CODE: BMA 2108

C.A.T 2

DATE of Submission DEC 2015

WRITE ALL YOUR DETAILS CORRECTLY, INCLUDING YOUR COURSE

ATTEMPT ALL THE QUESTIONS:

- 1. A radioactive isotope remains unused in a lab for 10 years, after which it is found to contain only 80% of the original mass. Find
 - i) The half life of the isotope
 - ii) How many additional years it will take until only 15% of the original amount is left?
- 2. Find the complete (general) solution of
 - i) $d^2y/dx^2 + \frac{dy}{dx} + 9 y = 5 e^{3x}$
 - ii) $(D^2 3D + 2)y = 2x^2 + 3e^{2x}$
- 3. Solve the Bernoulli's equation $x \frac{dy}{dx} + y = y^3 \ln x$
- 4. Finding the particular solution of the differential equation $x^2 d^2y/dx^2 4 x dy/dx + 4y = 4x^2 16x^3$ given y(2) = 4, $y^1(2) = -1$
- 5. Using the transformation
 - i) $3x + 2 = e^z$ solve the non-homogeneous equation $(3x + 2)^2 d^2y/dx^2 + 3(3x + 2)\frac{dy}{dx} 36y = 3x^2 + 4x + 1$
 - ii) z=2x+3y solve the differential equation by separation of variable methods $\frac{dy}{dx} = \frac{4x+6y+5}{2x+3y+4}$
- 6. find power series solution by Taylor's series expansion method $(x-1) d^2y/dx^2 (3x-2) dy/dx + 2xy = 0$