ACGEBRAIC STRUCTURES ASSIGNMENTED

MOUNT KENYA UNIVERSITY

UNIVERSITY EXAMINATIONS 2015/16

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCES

BACHELOR OF EDUCATION ARTS & BACHELOR OF EDUCATION SCIENCE AND BSNE

SCHOOL BASED

BMA 1105: ALGEBRAIC STRUCTURES

AUGUST 2015

SUPPLEMENTARY/ SPECIAL EXAM DRAFT

TIME:2 HOURS

Oc, 9 Dall, 3 a, b, c 4 h 6 b (ii)

INSTRUCTIONS: ANSWER QUESTION ONE IN SECTION A AND ANY OTHER TWO QUESTIONS FROM SECTION B

SECTION A

QUESTION ONE (30 MARKS)

- (a) Given the meaning of the following symbols as used in algebraic structures(5 mks)
 - (i) aEA
 - (ii) IR
 - (iii) f: X→Y
 - (iv) AUB
 - $(v) Z_3$
- (b) Give the meaning of a set and list the elements of the following sets (2mks)
 - (i) $A = -\{a \text{ is even: } -3 \le a \le 4\}$

(2mks)

(ii) B =-{ prime numbers less than 11}-

- (c) Given that $A = \{1,2,3,4,5,6,7\}$, $B = \{1,5,9\}$, and the universal set $E = \{x : 1 \le x \le 10\}$ find
 - (i)ANB (2mks)
 - (ii) A-B (2mks)
 - (iii) the complement of the set B (2mks)
 - (d) State four examples of fields (4mks)
 - (e) Which between z3 and z4 is a field? Give reasons (4mks)
 - (f) Let G = (z, +) be the group of all integers under addition. If $H = \{3a: a \in z\}$, find all the disjoint left cosets of H in G (4mks)
- Let \Rightarrow be defined on z, the set of integers by $a \Rightarrow b = a + b + 3$ for all $a,b \in z$

- (i) show that satisfies the closure property, associativity and commutativity(4mks)
- (ii) find the identity element (1mk)
- (iii) find the inverse of a€z (1mk)

SECTION B

- $\sqrt{2}$. (a) Let G= (z_5 , x_5) be the set of non-zero integers modulo 5 under multiplication modulo 5. Show that
 - (i) G is closed under multiplication modulo 5.(2mks)
 - (ii) Multiplication modulo 5 is associative in z_5 .(2mks)
 - (b) (i) state the identity element in (a) above (2mks)
 - (ii) state the inverse of every element in z₅(2mks)
 - (c) show that G is abelian (2mks)
 - (d) let $f: R \longrightarrow R$ be defined by f(x) = x/(x+1)
 - (i) find f(-5), the domain and co domain of f (4mks)
 - (ii) find $f^1(x)$ and $f^1(1)$ (3mks)
 - (iii) show that f is 1-1 (3mks)
 - 3. the following are cayley tables of a ring R

+	a	b	С	d	E	f	g
a	e	a	d	g	F	С	b
b	a	Ь	С	d	E	f	g
С	d	С	a	е	G	Ь	f
d	g	d	e	f	В	a	C
e	f	е	g	Ь	C	d	a
f	C	f	Ь	a	D	g	e
g	b	g	f	С	A	e	d

X	a	Ь	C	d	Е	f	g
a	f	b	d	a	G	e	C
Ь	Ь	Ь	b	b	В	Ь	b
С	d	Ь	g	C	F	a	e
d	a	b		d	Е		ø
е	g	Ь	f	е	D	С	a
f	е	b	a	f	С	g	d
g	С	Ь	e	g	A	d	f

(A) state the identity element of R under + and x (2mks)

- (a) give the inverse of each element under + (3mks)
- (6) give the inverse of each element under x (3mks)
- GY solve for x and y if
 - (i) $(x+c)a = g^2$
- (4mks)
- (ii) (exy) + d = e
- (3mks)
- (j) complete the table below (5mks)

X	a	b	С	D	С	g
X^2						
v3						

4. given that A=-{a, b, c, d, e, f}-,

$$C = \{p, q, r, s, t, u, v, w\}$$

And that h and g are functions defined by

h:
$$a\rightarrow 2$$
, $b\rightarrow 3$, $c\rightarrow 5$, $d\rightarrow 6$, $e\rightarrow 7$, $f\rightarrow 4$,

g;
$$1 \rightarrow p$$
, $2 \rightarrow q$, $3 \rightarrow r$, $4 \rightarrow s$, $5 \rightarrow u$, $6 \rightarrow v$, $7 \rightarrow w$,

- (f) define the composition map gh (2mks)
- (g) using a diagram, show how each element in A is mapped by the composite map gh (5mks)
- (h) Explain whether or not the inverse functions $f^1: B \rightarrow A: g^{-1}: C \rightarrow B$ and $(gf)^{-1}: C \rightarrow A$ exist. (6mks)
 - (i) Find $g^{-1}(E)$ given that $E = \{p, r, u, v, w\}$
- (5mks)
- (j) Find $f^{1}(D)$ given that $D = \{4,5,6,7\}$ (4mks)

5. (a) let $G = \{A_1, A_2, A_3, A_4\}$ be the multiplicative group of four matrices:

$$A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ A_2 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \ A_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \ , \ A_4 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Complete the cayley table below, hence show that G is a group. (5mks)

X	A_1	A ₂	A ₃	A ₄
A_1				
A_2				
A ₃				
A4				

- (b) State the zero divisors and units in $z_6 = \{0,1,2,3,4,5\}$ the, ring of integers modulo 6 (5mks)
- \odot The following is an operation table for a group $G = \{e,a,b,c\}$

-			1	0
	e	a	· D	
			l la	10

A	a	b	С	e
В	b	С	e e	A
C ·	C-	e	a	В

(i)let $H = \{e, b\}$. show that H is a sub group of G (4mks)

(ii) find all the disjoint right cosets of H in G (4mks)

(iii) Show that the inverse of ac is c⁻¹a⁻¹ (2mks)