Name:	Index No:/
1602/204	
1522/204	Candidate's Signature:
MICROELECTRONICS, ELECTRICAL	· · · · · · · · · · · · · · · · · · ·
PRINCIPLES II, INSTRUMENTS AND	
ELECTRONIC FAULT DIAGNOSIS	Date:
Oct./Nov. 2015	
Time: 3 hours	

THE KENYA NATIONAL EXAMINATIONS COUNCIL

CRAFT CERTIFICATE IN ELECTRICAL AND ELECTRONIC TECHNOLOGY (TELECOMMUNICATION OPTION) MODULE II

MICROELECTRONICS, ELECTRICAL PRINCIPLES II, INSTRUMENTS AND ELECTRONIC FAULT DIAGNOSIS

3 hours

INSTRUCTIONS TO CANDIDATES

Write your name and index number in the spaces provided above.

Sign and write the date of the examination in the spaces provided above.

You should a Scientific calculator/mathematical table and 8080/8085 Instruction set for this examination.

This paper consists of EIGHT questions in THREE sections; A, B and C.

Answer ONE question from section A, TWO questions from section B and TWO questions from section C in the spaces provided in this question paper.

All questions carry equal marks.

Maximum marks for each part of a question are as shown.

Do NOT remove any pages from this booklet.

Candidates should answer the questions in English.

For Examiner's Use Only

Section	Question	Maximum Score	Candidate's Score
A		20	
D		20	
В		20	
C		20	
C		20	
	Total Score	100	

This paper consists of 24 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A: MICRO-ELECTRONICS

Answer ONE question from this section.

1.	(a)	State the function of each of the following microprocessor registers:	•
		(i) index;	
	-	(ii) stack pointer;	
		(iii) segment.	
			(3 marks)
	(b)	List any two characteristics of each of the following Intel microprocesso	rs:
		(i) 8085;	
		(ii) 8086;	
		(iii) pentium IV.	
			(6 marks)
	(c)	A 4 K x 8 RAM memory is implemented using 1 K x 8 memory chips.	
		(i) Determine the number of	·
		(I) 1K x 8 chips required;	
		(II) Address lines for each 1 K x 8 memory chip.	
		(ii) draw the memory chip organisation.	(8 marks)
	(d)	State three advantages of DRAM over SRAM memories.	(3 marks)
			(3 marks)
2.	(a)	Define each of the following microprocessor addressing modes, illustrating an example:	g each with
		(i) register;	
		(ii) direct;	
		(iii) indexed.	
			(6 marks)

(b) Table 1 shows an assembly language program segment and its corresponding machine code. Fill in the missing data. (10 marks)

Table 1

Address (Hex)	Machine code (Hex)	Instruction	Comment
1800	01	LX1 B, 40	$(BC) \leftarrow (4030H)$
1803	21 50 20	LX1 H,	$(HL) \leftarrow (2050H)$
		DAD B	HL ← HL + BC
1807	3E 4E	MV1 A,	(A) ← ()
1809	4A	MV1B,4AH	$(B) \leftarrow (4 \text{ A H})$
		ADD B	$A \leftarrow A + B$
180 C	76	HLT	

(c) Arrange the following microcomputer memories in terms of access times, starting with the fastest: magnetic cassette, DRAM, SRAM, hard disk. (4 marks)

SECTION B: ELECTRICAL PRINCIPLES II

Answer any TWO questions from this section.

- 3. (a) State the two methods of damping used in analog instruments.
 - (ii) With the aid of a labelled diagram describe spring control of a spindle in moving coil instruments. (9 marks)
 - (b) Figure 1, shows a block schematic of a digital voltmeter. Describe its operation. (5 marks)

Fig. 1

- (c) A moving-iron instrument requires 400 ampere-turn to give full-scale deflection. Determine the:
 - (i) number of turns in the shunt coil to enable the instrument be used as an ammeter reading upto 50 A;
 - (ii) number of turns in the multiplier coil to enable the instrument be used as a voltmeter reading up to 300 V;
 - (iii) resistance of the multiplier coil.

(6 marks)

- 4. (a) (i) Define each of the following with respect to alternating quantities:
 - (I) waveform;
 - (II) amplitude.
 - (ii) A sinusoidal voltage of frequency 60 Hz has a maximum value of 120 V.
 - (I) write down the expression for the instantaneous value of the voltage;
 - (II) determine the time taken by the voltage to rise from 0 V to 96 V.

(10 marks)

- (b) (i) Draw a circuit diagram illustrating a 3-phase star connected generator feeding a 3-phase star connected load via a 3-phase, 4-wire system.
 - (ii) The ratio of the readings of the two wattmeters connected to measure power in a 3-phase balanced load is $W_2:W_1 = 3:1$. Determine the load power factor.

(10 marks)

5. (a) Figure 2 shows a circuit diagram of a parallel R - L network.

- (i) Determine the following:
 - (I) current through resistor R;
 - (II) current through inductor L;
 - (III) current taken from the supply;
 - (IV) phase angle between the supply current and the supply voltage.
- (ii) Draw the phasor diagram for the circuit using the values determined in 5a(i).
 (12 marks)
- (b) A 2 μ F capacitor is connected to a 100 V dc supply through a 1 M Ω series resistor. Determine the:
 - (i) time constant of the circuit;
 - (ii) initial charging current;
 - (iii) voltage across the capacitor after 6 seconds;
 - (iv) time taken for the capacitor to be full charged.

(8 marks)

SECTION C: INSTRUMENTS AND ELECTRONIC FAULT DIAGNOSIS

Answer any TWO questions from this section.

- 6. (a) (i) State the function of each of the following controls on an oscilloscope:
 - (I) focus;
 - (II) vertical position;
 - (III) volts/division.
 - (ii) Explain any three measures that should be taken to ensure the safety of test instruments. (9 marks)
 - (b) With the aid of a labelled diagram describe the calibration of working voltmeter against a standard voltmeter. (7 marks)
 - (c) A voltmeter having a sensitivity of 2,000 Ω /V is used to measure the voltage across a circuit having an output impedance of 10 k Ω . The open circuit voltage of the circuit is 6 V. Determine the reading on the meter when it is set to a 10 V scale.

(4 marks)

7.	(a)	Defi	fine each of the following with respect to signal source:	
		(i) (ii) (iii)	stability; attenuation;	. •
		, ,		(6 marks)
-	(b)	With audi	h the aid of a labelled block diagram, describe the test for phase distortion is in frequency amplifier using a audio frequency signal generator and an oscil	
	(c)	110112	ctangular wave displayed on an oscilloscope has 1 cycle occupying 8 cm or zontal scale and its amplitude is 3 cm in the vertical scale. The scale setting lloscope are 20 µs/cm and 10 V/cm respectively. For the wave, determine the	
		(i) (ii) (iii)	period; frequency; peak-to-peak value.	
8.	(a)	(i)	State any two faults in electronic circuits that can be revealed by visual inspection.	7 marks)
		(ii)	Describe the operation of a solder sucker.	marks)
	(b)	Figure	e 3 shows a logic circuit diagram of a car seat belt alarm.	marks)
		(i)	State the:	
			(I) fault that will cause the LED to be ON continuously irrespective of input state;	of any
			(II) symptoms for an open circuit in the pcb track at the output of gate	D.
		(ii)	Explain the effect of an open circuit in the power supply (+5V) line to IC_1 (7	marks)

(c) Figure 4 shows a circuit diagram of a common base amplifier and table 2 shows the dc bias voltages under normal and fault conditions. State the nature of the fault for each fault condition. (8 marks)

Table 2

Test point	1	2	3		
Normal voltage (V)	2.3	3.0	7.0		
Fault A	0	0	12		
Fault B	0	3	12		
Fault C	3.8	3	3.8		
Fault D	5.2	5.9	5.9		

Instruction set of

8080/8085

OP	<u> </u>		OP	Π		OP		OF			OP			OP	T	
CODE	MNE	MONIC	CODE	MNE	MONIC	CODE	MNEMONIC	CODE	MNEN	IONIC	CODE	MNEA	MONIC	CODE	MNE	MONIC
00	NOP		2B	DCX	H	56	MOV D,M	81	ADD	С	ΛC	XRA	Н	D7	nsr	2
01	LX1	B,D16	2C	INR	L	57	MOV D,A	82	ADD	D	AD	XRA	L	D8	RC	
02	STAX	В	2D	DCR	L	58	MOV E,B	83	ADD	Ε	AE	XRA	M	D9	-	
03	INX	B	2E	MVI	L,D8	59	MOV E,C	84	ADD	Н	AF	XRA	A	DA	JC	Adr
04	INR	8	2F	CMA		5A	MOV E,D	85	ADD	L.	B0	ORA	В	DB	IN	D8
05	DCR	В	30	SIM		5B	MOV E,E	86	ADD	M	B1	ARQ	С	DC	CC	Adr
06	MVI	B.D8	31	LXI.	SPD 16	· 5C	MOV E,H	87	ADD	Α	B2	ORA	D	DD	-	
07	RLC		32	STA	Adr	5D	MOV E,L	88	ADC	8	B3	ARO	E	DE	SBI	D8
08	-		33	INX	SP	5.E	MOV E,M	89	ADC	C	B4	ORA	н	DF	RST	3
09	DAD	8	34	INR	М	5F	A,3 VOM	8A.	ADC	D	85	ORA	L	E0	RPO	
0A	LDAX	8	· 35	DCR	M	60	MOV H,B	88	ADC	E	B 6	ORA,	М	Εı	POP	H
08	DCX	В	36	MVI	M.DB	61	MOV H,C	8C	ADC	H	B 7	ORA	Α	E2	JPO	Adr
OC	INA	C	37	STC		62	MOV H,D	8D	ADC	92	B8	CMP	В	E3	XTHL	
OD	DCR	C	38			63	MOV H,E	8E	ADC	М	89	CMP	С	E4	СРО	Adr
0E	MVI	C,DB	39	DAD	SP	64	мо∨ н,н	8F	ADC	Α	BA	СМР	D	E5	PUSH	Н
OF	RRC	1	3A	LDA	Adr	65	MOV H,L	8G	SUB	В	BB	CMP	E	E6	ANI	D8
10			3B	DCX	SP	66	моу н,м	910	suB	С	BC	CMP	Н	E7	RST	4
11	LXI	D,D16	3C	INR	A	67	MOV H,A	92	SUB	D	BD	CMP	L	E8	RPE	
12	STAX	D	3D	DCR	A	68	MOV L,B	93	SUB	E	. BE	CMP	M	E9	PCHL	
13	INX	D	3E	MVI	A,D8	69	MON F'C	94	SUB	Н	8F	CMP	Α	EA	JPE	Adı
14	INR	D	3F	CMC	İ	6A	MOV L,D	95	SUB	L	CO	RNZ		EB	XCHG	
15	DCR	D	40	MOV	B,B	68	MOV LE	96	SUB	M	C1	POP	8	EC	CPE	Adr
16	MVI	D.D8	41	MOV	B,C	6C	MOV L,H	97	SUB	Α	C2	JNZ	Adr	ED		
17	RAL -) -	42	MOV	B,D	6D	MOV L,L	98	588	8	С3	JMP	Adr	EE	ERI	D8
18			43	MOV	B,E	6E	MOV LM	99	SBB	С	C4	CNZ	Adr	EF	RST	5
19	DAD	D.	44	MOV	В,Н	6F	MOV LA	9A	SBB	D	C5	PUSH	8	FO	RP	
1A	LDAX	D	45	MOV	B,L	(30)	MOV M,B	98	\$8B	E	C6	ADI	D8	F1	POP	PSW
18	DCX	D	46	MOV	В,М	71	MOV M,C	9C	SBB	н	C7	RST	0	F2	JP .	Adr
1C	INA	E	47	MOV	B,A	72	MOV M,D	9D	SBB	L	C8	NZ		F3	DI	
1D	DRC	E	48	MOV	C.B	73	MOV M,E	9E	SBB	М	C9	RET	Adr	F4	CP	Adr
. 1	MVI	E,D8	49	MOV	C,C	74	MOV M,H	9F	SBB	A	CA	٠JZ	1	F5	PUSH	PSW
Į	RAR	1	4A	MOV	C,D	75	MOV M,L	. A0	ANA	В	CB			F6	ORI	D8
- 1	RIM	1	4B	MOV	C,E	76	HLT	A1	ANA	c	cc	CZ	Adr	F7	RST	6
	LXI	H,D16	i		3	77	MOV M.A	A2	ANA	D	CD	CALL	Adr	F8	RM	
1		Adr		MOV	C,L	78	B,A VOM	A3		E	CE	ACI	D8	F9	SPHL	
ŧ	INX	Н				79	MOV A,C	A4	ANA	н	CF	RST	1	FA	JM	ıbA
1	INR	Н			C,A	7A	MOV A,D	A5	ANA	L	DO	RNC	. 1	FB	EI	
1	DCR	Н	1	MOV	D,B	7B	MOV A,E	A6	ANA	M	01	POP	D	FC	CM	Adı
	MVI	H,D8	1	MOV	D.C	7C	MOV A,H	A7	ANA	A	D2	JNC	Adr	FD		
- 1	DAA	-	- 1	MOV	D,D	70	MOV A,L	AB	XRA	- 1	D3	OUT	DB	FE	CPI	D8
- 1		. 1	i			78	MOV A,M	A9	XRA	- 1	D4	CNC	Adı	FF	AST	7
1		H	- 1	MOV	D,H	7F	MOV A,A	AA.	XRA	1	D5	PUSH	D	1		
2A	LHLD	Adı	55	MOV	D,L	80	ADD B	AB	XRA	E	.D6	SUI	D9			

D8 = constant, or logical/arithmetic expression that evaluates to an 8-bit data quantity. D16 = constant, or logical/arithmetic expression that evaluates to a 16-bit data quantity. Adr = 16-bit address.