1521/203 1601/203 1522/203 1602/203 MATHEMATICS June/July 2016

Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

CRAFT CERTIFICATE IN ELECTRICAL AND ELECTRONIC TECHNOLOGY (POWER OPTION) (TELECOMMUNICATION OPTION)

MODULE II

MATHEMATICS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Mathematical tables/non-programmable scientific calculator;

Answer booklet.

Answer any FIVE of the following EIGHT questions.

All questions carry equal marks.

Maximum marks for each part of a question are as shown.

Candidates should answer the questions in English.

This paper consists of 4 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

1. (a) Given the matrices
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & -1 \\ 0 & 1 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 & -1 \\ 0 & -2 & -1 \\ 1 & 1 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & -2 & 3 \\ -3 & 2 & -1 \\ 1 & -4 & -2 \end{bmatrix}$, determine the matrix $D = C^2 + (AB)^T$. (8 marks)

(b) Three currents I_1 , I_2 and I_3 in an electric circuit satisfy the simultaneous equations:

$$I_1 + I_2 + I_3 = 4$$

 $-I_1 + 2I_2 - I_3 = 2$
 $2I_1 - I_2 + I_3 = 1$

Use the inverse matrix method to determine the values of the currents. (12 marks)

- 2. (a) Write down the term in x^5 in the binomial expansion of $(2x-3y)^{11}$, and determine its value when $x=\frac{1}{3}$ and $y=\frac{1}{2}$. (7 marks)
 - (b) (i) Expand $(1-8x)^{-\frac{1}{2}}$ as far as the term in x^3 .
 - (ii) Hence, by putting $x = \frac{1}{100}$ in the result in (i), determine the value of $\frac{1}{\sqrt{23}}$ correct to four decimal places. (6 marks)
 - (c) The magnetic field strength H due to a magnet of length 2ℓ and moment M at a point on its axis distance x from the centre is given by $H = \frac{M}{2\ell} \left\{ \frac{1}{(x-\ell)^2} \frac{1}{(x+\ell)^2} \right\}$.

Use the binomial theorem to show that $H = \frac{2M}{x^3}$, approximately. (7 marks)

3. (a) Prove the identities:

(i)
$$1 - \frac{\sin x \tan x}{1 + \sec x} = \cos x;$$

(ii)
$$\operatorname{Cosec} 2\theta \operatorname{Cos} 2\theta = \frac{1}{2} (\cot \theta - \tan \theta)$$
.

(8 marks)

(b) If A, B and C are angles of a triangle, prove that:

$$\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C.$$
 (8 marks)

(c) Solve the equation
$$\cos 2\theta + \cos \theta + 1 = 0$$
, for $0^{\circ} \le \theta \le 180^{\circ}$. (4 marks)

- 4. (a) Given $3x^2 kx + 12$ is positive for all values of x, determine, by completing the square, the possible values of k. (6 marks)
 - (b) Solve the equation: $3(3^{2z+2})-7(3^{z+1})+2=0$, correct to four decimal places. (6 marks)
 - (c) Three forces F_1 , F_2 and F_3 necessary to keep a body in equilibrium satisfy the simultaneous equations:

$$2F_1 + 3F_2 - F_3 = 12$$

 $-2F_1 + F_2 + 3F_3 = 16$
 $F_1 - 2F_2 + F_3 = 1$

Use the substitution method to solve the equations.

- (8 marks)
- 5. (a) Determine the values of p and q such that $3\cosh x + 5\sinh x = pe^x + qe^{-x}$. (5 marks)
 - (b) Given the trigonometric identities
 - (i) $1 + \cot^2 x = \csc^2 x$
 - (ii) $\cot 2x = \frac{\cot^2 x 1}{2\cot x},$

use Osborne's rule to derive the corresponding hyperbolic identities.

(3 marks)

- (c) Solve the equations:
 - (i) $3\cosh x + 4\sinh x = 3$;
 - (ii) $\cos 2\theta + \sin \theta = 0$, for $0^{\circ} \le \theta \le 360^{\circ}$.

(12 marks)

6. (a) Determine a unit vector that is perpendicular to the vectors:

$$\underline{A} = 2\underline{i} - 3\underline{j} + 4\underline{k} \text{ and } \underline{B} = -\underline{i} + 2\underline{j} - 2\underline{k}.$$
 (5 marks)

- (b) Given the scalar field $\phi = x^3y^2 + yz$, determine, at the point (1,-1,1):
 - (i) $\nabla \phi$;
 - (ii) the directional derivative of ϕ in the direction of the vector $\mathbf{A} = 2\mathbf{i} \mathbf{j} + 2\mathbf{k}$. (8 marks)

1521/203 1601/203 1522/203 1602/203

- (c) The magnetic field $B = xyi + x^2yj z^2k$ exists in a region of space. Determine, at the point (1, 0, 1):
 - (i) ∇B ;
 - (ii) $\nabla \tilde{\times} B$.

(7 marks)

- 7. (a) Given:
 - (i) $y = \frac{1}{x^2}$, find $\frac{dy}{dx}$ from first principles;
 - (ii) $y = a \cos 3x + b \sin 3x$, show that $\frac{d^2y}{dx^2} + 9y = 0$.

(10 marks)

- (b) Determine the stationary points on the curve $y = 2x^3 + 3x^2 12x + 7$ and state their nature. (10 marks)
- 8. (a) Given $u = \frac{x-y}{x+y}$, prove that $x = \frac{\partial^2 u}{\partial x^2} + y = \frac{\partial^2 u}{\partial y^2} = 0$. (7 marks)
 - (b) Locate the stationary points of the function $z = 8 2x^2 3y^2 + 6xy 8x$, and determine their nature. (8 marks)
 - (c) Evaluate the integrals:
 - (i) $\int \sin 3x \sin x \, dx;$
 - (ii) $\int_0^1 \left(\frac{x^{-\frac{1}{2}} + x^{-\frac{3}{2}}}{x^{-\frac{3}{2}}} + 2x \right) dx$ (5 marks)

THIS IS THE LAST PRINTED PAGE.